
 

 
 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Map to the 
Future (M2F): 

 
Integrating soil 

mapping into cocoa 
farm development 

plans in Ghana 

 
Version: 30 October 2020 

 



 

 
 

 

Acknowledgments 

 
This project, Map to the Future (M2F): Integrating soil mapping into cocoa farm development plans in 
Ghana, submitted in response to the 2018 call for proposals by the World Bank’s Development 
Economics Data Group (DECDG) and the Global Partnership for Sustainable Development Data 
(GPSDD), is supported by the World Bank’s Trust Fund for Statistical Capacity Building III (TFSCB-III) 
with financing from the United Kingdom's Foreign, Commonwealth & Development Office, the 
Department of Foreign Affairs and Trade of Ireland, and the Governments of Canada and Korea. 
 

 
 

 

 
The project team also acknowledges valuable inputs and cooperation from Peter van Grinsven 
(BrightLife Farming), Dr. Edward Yeboah and Stephen Owusu (Council for Scientific and Industrial 
Research [CSIR] - Soil Research Institute), Ernest Dwamena and Frank Mensah (Touton, Ghana), 
Selasse Gidiglio (Rainforest Alliance), and Odjobi Kwakye (Escape Poverty Africa). In addition, we 
would like to voice our appreciation for the following individuals who participated in the early 
consultations that helped inform the design of this project: Dr. Richard Asare (International Institute of 
Tropical Agriculture- IITA), Dr. Michael Opoku-Agyeman  and Dr. Alfred Arthur (Cocoa Research 
Institute of Ghana- CRIG), Dr. Richard Ampadu-Ameyaw (Science and Technology Policy Research 
Institute-CSIR), Dr. Eunice Agyako Mintah (Ghana Atomic Energy Commission), Edward Kumah 
(Mondelez/Cocoa Life).  
 

Project Team 

 
The Grameen Foundation USA: Gigi Gatti (Technology for Development Director), Bobbi Gray 
(Research Director), Mona McCord (Innovations in Agriculture Director), Alfred Yeboah (Regional 
Director, Africa), Julián Gomez (Technical Advisor, Agriculture and Technology), Hannah Rubio 
(Technology Project Manager) 
 
The Sustainability Innovation Lab at the University of Colorado, Boulder USA: Dr. Jason Neff 
(Director), Dr. Jonathan Maynard (LandPKS Analytical Scientist), Meghan Mize and Carolyn Kerchof 
 
United States Department of Agriculture (USDA), Agricultural Research Service: Dr. Jeff Herrick 
(Soil Scientist and LandPKS Primary Investigator) 
  



 

 
 

 
Contents 
 
Acknowledgments ii 
Project Team ii 
Project Information 1 
Executive Summary 4 
Acronyms 8 
Introduction 9 
Site-specific Soil Information in Ghana’s Cocoa Growing Regions 10 

Evaluating and Comparing Four Approaches for Generating Agronomic Recommendations in 
Ghana’s Cocoa Growing Regions 12 

1. FarmGrow 13 
2. FarmGrow + Soil Maps 16 
3. FarmGrow + LandPKS 18 
4. FarmGrow + LandPKS + SoilID 20 

Translating Site-specific Soil Information into Agronomic Knowledge 20 
Downscaling Global Agro-Ecological Zones (AEZ) Soil Suitability 21 

Farm Input/Management Levels 22 
Area-specific vs. Site-specific Soil Suitability in Ghana’s Cocoa Growing Region 23 

Case Study 1: FarmGrow-LandPKS Soil Suitability for a Cocoa Farm 25 
Case Study 2: FarmGrow-LandPKS Soil Suitability for Farm Diversification 27 
Lessons Learned 28 

Technical Challenges and Organizational Experience 28 
Potential for Replicability and Scalability 29 
Opportunities for Other Farmer Decision Support Tools 29 

Conclusion and Future Refinement 30 
Appendix 1: FarmGrow Cocoa Adoption Observations 31 
Appendix 2. Comparing Existing Soil Map Data to Site-specific Soil Data 37 
Appendix 3. LandPKS Soil and Site Characterization Protocol 46 
Appendix 4. Internal Reports, Useful Links and References 49	
 



Map to the Future (M2F) page 1 

 
 

Project Information 
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Covered 

1 (No Poverty), 2 (Zero Hunger), 8 (Decent Work and Economic Growth), 13 
(Climate Action), 17 (Partnerships) 

Country Ghana 

Data Types Site specific farm and farmer data, Site based soil data, Soil maps, Crop 
Specific Soil Recommendations 

Technologies Land-Potential Knowledge System (LandPKS) is an open-sourced global 
suite of mobile phone applications, initially funded by the USAID, and 
implemented by the USDA. LandPKS is used to collect (1) basic soil and 
topographic information necessary to determine land potential and (2) soil 
and vegetation cover data necessary to assess and monitor major changes 
in plant community composition and wind and water erosion risk.  The 
LandPKS team is led by the United States Department of Agriculture - 
Jornada Research Unit in partnership with the Sustainability Innovation Lab 
at the University of Colorado, Boulder, and the New Mexico State University. 
 
FarmGrow is an android-based decision making tool used by cocoa 
extension coaches that combines agronomy and economics.  Using the tool, 
cocoa farmers are presented with recommendations and specific agronomic 
practices that they can adopt to increase their productivity to 1.5MT to 2 MT 
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productivity over a multi-year timeline. FarmGrow was developed by 
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Project Objective This research project will integrate site-specific soil data with traditional 
survey data to explore the feasibility of supporting Bank projects which aim to 
improve the productivity of small-holder Cocoa farmers. The particular focus 
of this research project is to discern whether integrating new and traditional 
sources of available data may generate more insights into soil quality, to 
inform current (and future) Bank projects seeking to strengthen yield 
potential for smallholder cocoa farmers in the country. The activities 
conducted in this project have the potential to enable relevant Bank 
operational teams to improve the feedback loop between local data collection 
and the algorithms used to produce satellite based global soil mapping 
measurement products. 

Risks Aside from Covid-19 related risks which caused a delay in soil sampling and 
the cancellation of two in-person workshops, there were no other project 
risks.  Originally, the Grameen and LandPKS team members were going to 
travel and engage directly in the data collection activities; however, due to 
travel restrictions, the team re-oriented funds to support the work of local soil 
scientists and a local data collection firm. This required frequent virtual 
meetings with both the local data collection firm (Escape Poverty Africa) and 
the soil scientists (Edward Yeboah and Stephen Owusu from the Council for 
Scientific and Industrial Research [CSIR] - Soil Research Institute) to both 
adapt to local travel and COVID restrictions and ensure safe data collection 
processes. Budgets were also slightly realigned to ensure hygiene practices 
would be followed, such as use of masks, hand sanitizer, and use of social 
distancing practices during in-door trainings. In lieu of the one-day, in-person 
event planned for Ghana in August and a brown-bag meeting scheduled for 
World Bank staff in September, one official webinar is now scheduled for 
January 2021 to share results with those directly engaged in the project. This 
medium will also allow a much wider audience to join and engage in the 
lessons learned by this project. Two informal webinars have already 
occurred with the World Bank and project team members and stakeholders 
to discuss and interpret the results of the study. 

Gender Data This research project was not set out to produce or generate gender 
statistics or data.  Out of the 75 primary farmers under the study, 13 were 
female (17.3%). 

Data / Methods This project leveraged two geo-enabled mobile technology applications 
(FarmGrow and LandPKS) to generate site-specific—and more granular and 
accurate—soil and agronomic data for 75 farms. Three sites (soil pits) were 
evaluated per farm resulting in 225 data collection points.  
 
While the collection of site-specific soil data is generally cost-prohibitive due 
to the cost of sample collection and analysis, these applications provide a 
streamlined approach for acquiring information needed to generate farm-
scale agronomic recommendations by using onsite observations and 
measurements of soil properties.  This project also integrated traditional and 
digital soil map data with our site-specific soil data to create a 
comprehensive site-specific dataset. In addition, we downscaled the Food 
and Agriculture Organization’s Agro-Ecological Zones (AEZ) soil suitability 
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modelling framework, allowing us to generate crop-specific soil suitability 
ratings at the farm-scale. This modeling framework and data integration has 
been developed within an API, which with future development could be 
integrated into existing geo-enabled mobile applications (e.g., FarmGrow or 
LandPKS). 
 
The M2F project also contributed to new site-specific soil classification data 
for cocoa growing areas in the Ashanti and Western Regions in Ghana. 
There were no further farmer profile disaggregations of data given the 
primary focus on comparing site-specific soil data with existing soil maps and 
with farmer performance data (adoption observations captured from 
FarmGrow).  
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Executive Summary 

 
Average cocoa yields in Ghana by smallholder farmers are currently far below their production potential 
(400 kg/ha vs. over 3,000 kg/ha) (Aneani and Ofori-Frimpong, 2013). FarmGrow 
(https://www.farmgrow.org), a geo-data enabled precision agriculture service and technology platform, 
is designed to assist smallholder cocoa farmers in Ghana to increase cocoa yields from 400 kg/ha to 
1500-2000 kg/ha over an 8- to 10-year period. Agronomists use FarmGrow with participating cocoa 
farmers to provide them with individualized support in adopting good agricultural practices (GAPs) and 
increasing on-farm investments to sustainably improve cocoa yields and cocoa income. This requires 
an accurate assessment of the agronomic constraints currently limiting cocoa yields. Dominant factors 
contributing to this current yield gap include climate, cultural practices, and the soil. Among these, long-
term soil degradation and, in particular, soil infertility is recognized as one of the main factors limiting 
cocoa yields in Ghana. FarmGrow’s current agronomic recommendations highlight the issues 
surrounding fertility of cocoa soils as 97% of the farms evaluated received some type of soil 
management recommendation. However, a major limitation in assessing farm-scale soil suitability and 
limitations lies is acquiring accurate soil property data. 
 
The main objective of the research conducted under the Map to the Future (M2F): Integrating soil 
mapping into cocoa farm development plans in Ghana project was to evaluate the integration of site-
specific soil data with traditional soil data products (e.g., regional-to-global soil maps) in an effort to 
provide location-specific soil information that smallholder cocoa farmers can use to improve soil health 
and overall farm productivity. M2F focused directly on the detailed characterization of soils on cocoa 
farms using the LandPKS app (https://www.landpotential.org), the relation between LandPKS soil 
property data and the soil maps in these settings, and the soil data accuracy requirements for cocoa 
soil management. Based on these analyses, a framework for how site-specific soil information may be 
used to help farmers better manage their soils is illustrated in Figure 1 and consists of three main steps: 

1. Acquire accurate site-specific soil data (FarmGrow + LandPKS). Seventy-five farms were 
assessed, with three data collection sites per farm, resulting in 225 soil sites. 

2. Link existing soil map data at the site location. 
3. Develop crop-specific soil recommendations based on site-specific + soil map data based on 

the Food and Agriculture Organization’s (FAO) Agro-Ecological Zone (AEZ) soil suitability 
methodology. 

 
The first step in this framework involves acquiring accurate site-specific soil data. The FarmGrow app 
currently collects a limited set of soil data that is used, in part, to generate individualized agronomic 
recommendations to smallholder cocoa farmers. This research study evaluated how the addition of 
more detailed soil characterization data collected using the LandPKS app could improve our 
understanding of soil limitations and be used to improve current agronomic recommendations. This 
study found that there was significant improvement in understanding soil limitations at cocoa farms with 
the addition of LandPKS soil data. For example, the FarmGrow assessment of soil physical condition 
only rated 1 farm as ‘Bad’ and 74 as ‘Good’, whereas the more detailed LandPKS soil assessment 
rated 47 farms as ‘Bad’ and 28 as ‘Good’. 
 
The second step in this framework involves linking soil map data at site locations. The relative 
accuracy of different soil map products (e.g., Harmonized World Soil Database [HWSD], World 
Inventory of Soil Emission Potential [WISE], SoilGrids) was evaluated relative to LandPKS soil data 
collected at each evaluation site. 
 
Figure 1.  M2F research framework  
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In Land PKS’ initial analysis of soil map data in Northern Ghana, SoilGrids was found to be the 
most similar to LandPKS soil data. However, HWSD/WISE was found to be the most accurate in 
Ghana’s cocoa growing regions (Ashanti and Western regions) and SoilGrids the least accurate 
compared to LandPKS, which illustrates the variable accuracy of soil map products. The lower 
accuracy of SoilGrids in the cocoa growing regions is most likely due to limited soil observations in 
these regions to train the SoilGrids models. 
 
Due to its higher accuracy in the cocoa growing regions, HWSD/WISE was used to link soil map data to 
the soil observation data generated from the LandPKS app. Two methods of linking soil map data to 
point locations were evaluated, (1) linking the dominant map unit component (area-specific linkage) and 
(2) using the LandPKS SoilID algorithm to match the most similar soil series based on the soil 
observation data at that site (site-specific linkage) (see Table 1 and Figure 8). It is important to note that 
traditional soil maps (HWSD and WISE) are designed to predict groups of soils occurring within a map 

Figure  Summary illustration of the framework used in this study to optimize site-specific soil data for 
generating crop-specific soil management recommendations based on the FAO’s Agro-Ecological Zone soil 
suitability methodology. 
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unit and that most users of soil maps (and nearly all non-soil scientists) simply select the dominant 
component, which we evaluated in the area-specific linkage case. One of the principal values of the 
LandPKS SoilID is that it effectively gives non-soil scientists the ability to access all of the data in 
traditional soil maps, like HWSD and WISE, resulting in potentially higher accuracy than simply 
selecting the dominant map unit component.  
 
The third step in this framework involves developing crop-specific soil recommendations based on 
site-specific data generated in Step 1, and the linked soil map data acquired from Step 2.  We used the 
Agro-Ecological Zones (AEZ) soil suitability modelling framework, developed by the Food and 
Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems 
Analysis (IIASA), to translate site-specific soil information into crop-specific soil suitability ratings 
(Figure 1). It should be noted that the AEZ modeling framework requires quantitative soil property input 
data and therefore only LandPKS soil data was used in the AEZ analysis. The AEZ methodology 
calculates seven crop-specific soil quality (SQ) indices for 54 different crop types at three different 
production input levels (low, intermediate, high). These indices include: (SQ1) nutrient availability, 
(SQ2) nutrient retention capacity, (SQ3) rooting conditions, (SQ4) oxygen availability, (SQ5) excess 
salts, (SQ6) toxicities (e.g., gypsum or calcium carbonate), and (SQ7) workability (Figure 1). The 
calculation of each soil quality index uses a unique set of soil property inputs, and based on the farm 
input level, these seven soil quality indices can be used to generate crop-specific suitability ratings 
(SR). 
 
FAO AEZ soil quality indices are only available as spatial maps generalized at a 10 km grid resolution; 
a scale too large to reliably inform agronomic management at the farm scale.  In this study, we have 
taken the AEZ methodology and applied it at the soil map unit component scale, effectively 
downscaling the crop-specific suitability ratings to a scale more appropriate for farm-scale decision 
making. This study localized the AEZ suitability calculations by leveraging site-specific soil property 
data (e.g., LandPKS texture, rock fragments, soil depth) and the LandPKS SoilID algorithm to identify 
the most likely soil component at each point location. Results from this downscaling effort showed that 
the localization of soil suitability ratings for cocoa often resulted in a different assessment relative to 
previous ratings based on more generic soil map data (e.g., dominant map unit component), particularly 
when results were compared across low-, intermediate-, and high-input farming systems (which vary 
regarding the amount of investment and mechanization that occurs on the farm). The ability to 
calculate soil suitability as a function of farm input level makes it possible to conduct a cost-
benefit analysis of crop intensification. Soil infertility was found to be the dominant soil constraint for 
cocoa production, particularly for the low- and intermediate-input level farming systems. Given all of 
the FarmGrow sites were found to fall into low- and intermediate-input farming systems, with 
low-input systems representing the majority, understanding the soil’s response to fertilization 
will assist farmers in optimizing their return on investment, particularly for those farmers in low-
input systems whose soils will not gain a lot of value from fertilization. Two cases studies 
presented in this report demonstrate 1) that recommendations given to cocoa farmers through 
FarmGrow, such as replanting or increasing use of fertilizer, may not be to the real benefit of the farmer 
given existing soil constraints and 2) use of the AEZ framework can also be used to gauge soil 
suitability for other crops being grown on the land, such as rice, maize, or among 53 other crop types 
assessed by the AEZ soil quality indices. 
 
Results from this analysis demonstrate the importance of site-specific soil data for understanding a 
soil’s agronomic limitations and the feasibility of soil management interventions for improving crop 
yields. Relying on soil map data alone may lead to an under or overestimation of land capability 
and thus fail to identify the soil management actions needed to improve cocoa yields. When 
smallholder farmers have limited resources (financial, human, etc.), these differences could mean 
success or failure or limited impact of the investments they are making. 
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Further work is needed to refine and test this framework through acquiring more detailed soil maps 
(e.g., Ghana soil survey map) and to expand our site-specific soil dataset. Future efforts to 
streamline the soil sampling process would also be needed in order to allow FarmGrow 
agronomists to integrate this data with their current data collection efforts. Future refinement of 
this work may also include integration of the site-specific AEZ soil suitability analysis into apps 
such as FarmGrow and LandPKS. This would allow end users in low resource settings to 
identify crops most suited for intercropping with cocoa based on their soil’s condition, in an 
effort to improve soil fertility through increased biodiversity of cocoa farms. 
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Acronyms 

 
AEZ Agro-Ecological Zones  

AO Adoption Observation 

FAO Food and Agriculture Organization of the United Nations  

GAPs Good Agricultural Practices 

HWSD Harmonized World Soil Database 

IIASA International Institute for Applied Systems Analysis 

SMUs Soil Map Units 

SG SoilGrids 

SQ Soil Quality 

SQI Soil Quality Index 

WISE World Inventory of Soil Emission Potential 
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Introduction 

 
Ghana is the second largest cocoa producer in Africa, with the cocoa sector providing livelihoods for 
over 700,000 farmers in the country’s southern tropical belt. Most cocoa farmers in Ghana operate 
small-area, low-input farms where cocoa is mostly grown under full sun or very low shade with little or 
no fertilizer applied. The continuous extraction of inherent fertility of cocoa soils without replenishment 
has resulted in the long-term depletion of soil fertility in cocoa farms and declining cocoa yields (Dossa 
et al., 2018). Recent increases in total cocoa production in Ghana have been largely due to agricultural 
expansion and conversion of remnant forests, particularly in the Western region where most soils are 
considered unsuitable for cocoa production (Appiah et al., 1997).  Cocoa productivity is influenced by 
both inherent soil properties (such as clay content and pH) that determine a soil’s potential productivity, 
and dynamic soil properties (such as organic matter and fertility) that determine soil health and that 
change over time as a result of management.  
 
In order to help farmers improve soil health and cocoa productivity through intensification and more 
efficient farming practices using existing plantations, farmers and/or agronomists must first identify 
which soil factors are currently limiting and to what extent they may be minimized or corrected. 
However, the lack of available, actionable information on soil physical and chemical properties has 
complicated or limited opportunities for small-area farmers to both identify the best soils for optimal 
cocoa production and improve soil health through appropriate soil management practices. Acquiring 
accurate soil information is a critical first step needed to improve farm productivity, but information 
alone is not sufficient to ensure that appropriate management practices are implemented.  
 
Interpretation of soil information within the context of specific crop requirements (i.e., nutrient 
requirements, texture requirements, drainage, etc.) is needed to identify and implement the most 
appropriate soil management practices given a soil’s inherent characteristics and limitations (e.g., 
shallow soil depth). To generate agronomic recommendations relating to soil management, a farmer or 
agronomist must  

(1) acquire accurate site-specific soil information;  
(2) synthesize soil information into agronomic knowledge; and  
(3) develop appropriate, actionable soil-specific agronomic recommendations.  

 
The focus of this research project was to examine soil information sources (all in digital form) in 
Ghana’s cocoa growing region, including traditional soil data sources (e.g., soil maps) and new sources 
of site-specific soil data (e.g., LandPKS, FarmGrow); and the ability to integrate all relevant soil data to 
inform farm management and improve overall farm productivity.  
 
Specific research objectives were: 

1. Conduct research that compares readily available site-specific soil information sources in 
Ghana’s cocoa growing regions, including FarmGrow observations and LandPKS soil 
characterization, with soil property predictions from current soil maps; and  

2. Explore how improved site-specific soil data may improve agronomic recommendations to 
smallholder farmers. 

 
  

Figure . Site-specific soil data evaluation framework for developing soil-specific agronomic 
recommendations. 
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Site-specific Soil Information in Ghana’s Cocoa Growing Regions 

The most accurate soil information at a site comes from direct observation and measurement. This 
involves digging a soil pit at a site and measuring various soil properties (e.g., texture, rock fragments). 
Some soil properties are relatively static and affect the long-term potential and consistent management 
approaches. These included factors such as soil texture and a number of soil properties that influence 
soil pH and fertilizer retention.  Other soil properties, such as carbon or nitrogen content, can vary over 
shorter time-scales depending on soil fertility management practices.  Site specific soil information can 
be used to improve long-term management recommendations but some decisions involving shorter 
term changes may require additional site-based measurements. While some soil properties can be 
directly measured at a site, many others that influence soil health (e.g., Cation Exchange Capacity1) 
require laboratory analysis. Limited access to soil laboratory analysis by farmers has restricted the soil 
data available to inform soil management. However, if a farmer or extension agent can identify the soil 
type (i.e., soil series) mapped at a location, it may allow them to infer some of these lab-measured soil 
properties and therefore gain improved insight into the soil’s agronomic potential and mitigate, when 
possible, known soil limitations. While global soil maps provide a complete set of physical and chemical 
soil data, these products are calibrated for national and global measures and not intended for accurate 
soil identification for small area estimates (field scale). This raises several important questions for end-
users, including: How accurate are soil maps at my farm? Which soil map product is the most 
accurate? Can I use soil map information to inform my soil management decisions? Answers to these 
questions require an understanding of site-specific soil accuracy as it relates to both the relative 
accuracy of soil map information (i.e., compared to soil profile measurements) and the levels of soil 
accuracy required for different land management applications (e.g., crop-specific soil requirements).  
 
Our evaluation framework for identifying the most accurate set of site-specific soil information for 
developing soil-specific agronomic recommendations is shown in Figure 2. In this framework we identify 
three main sources of soil information in Ghana’s cocoa growing regions: FarmGrow, LandPKS, and 
current soil maps. FarmGrow and LandPKS both provide site-specific soil data, while soil maps provide 
soil property and class predictions (often with high uncertainty) at point locations. 

                                                             
1 Cation exchange Capacity (CEC) is a measure of the soil's ability to hold positively charged ions. It is a very important soil 
property influencing soil structure stability, nutrient availability, soil pH and the soil's reaction to fertilizers and other 
ameliorants (Hazleton and Murphy 2007). 
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Figure 2.  Evaluation Framework for site-specific soil information in Ghana’s cocoa growing regions 

 
 
Based on these three soil information sources, we identified four possible approaches for 
generating agronomic recommendations, (i) FarmGrow, (ii) FarmGrow + Soil Maps, (iii) FarmGrow + 
LandPKS, and (iv) FarmGrow + LandPKS + SoilID (Figure 1, Table 1). 
 
Table 1. Soil data sources evaluated  

Soil Data Source Description 
1. FarmGrow Limited set of soil property and soil management data collected at each farm. Includes 

soil physical condition, organic matter condition, fertilizer application and formulation, pH, 
and drainage. 

2. LandPKS Detailed set of soil property data collected at up to seven fixed-depth intervals. Includes 
soil texture class, rock fragment volume class, soil color, land slope, slope shape, and 
information on soil limitations and soil health. 

3. Soil Map Data  
Soil Maps Soil property data predicted at each location from both traditional (HWSD/WISE) and 

digital (SoilGrids) soil maps. Represents the dominant map unit component (traditional) 
or predicted (digital) soil property data at each location. 

SoilID LandPKS SoilID algorithm identifies the most likely soil map unit component at each 
point location from traditional soil maps by matching the soil map data to the measured 
soil data at each site. 
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FarmGrow, with its limited set of soil property observations (i.e., adoption observations), represents our 
baseline of soil information. The FarmGrow app is used to record soil properties (i.e., soil physical 
condition, organic matter condition, pH, and drainage) and related soil management observations (i.e. 
fertilizer application and formulation) from the top 30 cm of the soil at each farm site. The second soil 
dataset, FarmGrow + soil maps, evaluates the value-add of directly integrating soil map predictions with 
FarmGrow soil data. The third soil dataset, FarmGrow + LandPKS, evaluates the benefit of adding 
more detailed site-specific soil data. The LandPKS app is used to record soil property data (e.g., soil 
texture class, rock fragment volume class, and soil color) at up to seven fixed depth intervals (i.e., 0-1, 
1-10, 10-20, 20-50, 50-70, 70-100, 100-120 cm). LandPKS is also used to document soil depth, land 
slope, slope shape, and information on soil limitations (e.g., soil cracking, surface salt accumulation, 
flooding, low pH, surface stoniness, high water table, and shallow soils) and soil health (e.g., biological 
activity, soil smell). The final soil dataset, FarmGrow + LandPKS + SoilID, evaluates the benefit of more 
detailed site-specific soil data plus a more accurate integration of soil map data by using the LandPKS 
SoilID algorithm. SoilID provides a modeling framework that can identify the most likely soil series at a 
sampling-location based on a simple set of soil property inputs measured at a site (e.g., soil texture 
class, rock fragment volume class, and soil color). The SoilID algorithm calculates a statistical similarity 
between the measured soil property values and the reported soil property values for each soil series 
mapped in that area. The soil series with the highest statistical similarity to the sampling site is 
identified as the most likely soil at that location.  
 
The evaluation of these different soil data groups provides information necessary for a cost-benefit 
analysis of integrating more detailed site-specific soil data (i.e., LandPKS) and more detailed but less 
accurate soil information for available soil maps (e.g. SoilGrids). Our objective is to generate 
information that can be used to decide if, where and when collecting site-specific soil data can 
significantly improve management decisions, and whether the integration of soil map data would 
provide added value based on the accuracy of their predictions. 
 
Evaluating and Comparing Four Approaches for Generating Agronomic 
Recommendations in Ghana’s Cocoa Growing Regions 
To evaluate the four approaches for generating agronomic recommendations, this study selected 75 
cocoa farms in Ghana’s southern cocoa growing regions (41 in Ashanti Region and 34 in the Western 
Region). These 75 farms are a subset of the ~3,000 farms participating in the FarmGrow program and 
selected to represent a diversity of farm conditions (e.g., age, size, yield, health). LandPKS soil and site 
characterization was performed at three sites per farm, with the location of each site selected to 
represent the variability of soil and site conditions at each farm. General information on the 75 farms is 
shown in Table 2. On average, the 75 profiled farms had 1 hectare of land under cocoa production with 
average productivity of 581 kg/ha and farm age of 25 years. Median production was a little under 500 
kg/ha which is consistent with the production levels of the larger sample size (~3,000). A little more 
than half noted growing additional crops; approximately one third used hired labor. Among those 
growing additional crops, the majority were growing plantain and cassava in addition to some other 
crops such as maize, rice, cocoyam, yam, banana, oil palm, peppers and okra. 
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Table 2. Summary information for the 75 cocoa farms evaluated in this study 

Cocoa farm area (ha) Mean: 1.0; Min: 0.2; Max: 6.6 
Productivity (kg/ha)* Mean: 581; Min: 77; Max: 1931 
Farm age (yrs.) Mean: 25; Min: 6; Max: 60 
Additional crops Yes: 44; No: 30; Not specified: 1 
Hired labor Yes: 27; No: 3; Not specified: 45 

*Note: There were two outliers in the data that have been removed; one with a minimum and one with a maximum level of 
production that did not realistically match their acreage. These questionable data points were removed to present a more 
accurate picture.   

 
1. FarmGrow 
 
FarmGrow is a digital agriculture advisory tool designed to assist smallholder cocoa farmers to increase 
cocoa yields from 400 kg / hectare to 1500 kg / hectare over an 8- to 10-year period. FarmGrow is used 
by agronomists to, (1) profile the farming household regarding basic demographics and farm data such 
as farm size, (2) assess the current condition of cocoa farms, such as determining tree age, density, 
health and the presence of diseases (3) identify which good agricultural practices (GAPs) and on-farm 
investments are needed to improve farm productivity, and (4) assist cocoa farmers in developing farm 
investment plans to support the agronomic and financial interventions needed to improve business 
performance and monitor success.   
 
The FarmGrow assessment framework evaluates farm productivity in four main areas: plant genetics, 
farm condition, GAPs, and soil fertility. The standard GAPS include pruning; pest, disease and 
sanitation practices; weeding; harvesting conditions; shade management; soil fertility management 
which includes soil condition and health, fertilizer formulation and application. A total of 14 evaluation 
metrics (Adoption Observations or AOs) are used to assess farm condition and the four areas affecting 
farm productivity.  
 
Table 3 shows the possible ratings for the four AO groups and 14 individual AOs. The AO groups are in 
bold (bold) and the 14 individual AOs are italicized. More in-depth descriptions of how the AOs are 
defined and scored are available Appendix 1.  
 
Table 3. FarmGrow rating system  

FarmGrow Adoption Observations Possible Ratings 
Genetics (Planting Material) Bad, Medium, Good 
GAPS Bad, Medium, Good 
   Pruning Bad, Medium, Good 
   Pest, Disease, Sanitation Bad, Medium, Good 
   Weeding Bad, Good 
   Harvesting Bad, Good 
   Shade Management Bad, Good 
Soil Fertility Bad, Medium, Good 
   Soil Condition Bad, Good 
   Organic Matter Bad, Good 
   Fertilizer Formulation Bad, Medium, Good 
   Fertilizer Application Bad, Medium, Good 
Farm Condition Bad, Good 
   Tree Age Bad, Good 
   Tree Density Bad, Good 
   Tree Health Bad, Good 
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   Debilitating Disease Bad, Good 
 
Table 4 shows the summary ratings for the four AO groups and 14 individual AOs. The scores for the 
individual AOs roll-up into an AO group score. In addition, two additional soil indicators assessing lime 
and drainage that were recorded in FarmGrow at the 75 farms were also evaluated in this study. The 
FarmGrow soil dataset represents our base-case (i.e., no additional soil information) for developing 
soil-specific agronomic recommendations. While most are scored as ‘Bad’ for Genetics (the planting 
material used), approximately half are either rated as ‘Medium’ or ‘Good’. Forty-five were rated ‘Bad’ on 
Farm Condition, driven by Tree Age and Tree Density. Overall, the 75 farmers were rated as ‘Bad’ on 
GAPS; the scores are driven by the overwhelming poor practices related to pruning and shade 
management.  
 
Regarding soil specifically (data in italics), while the majority (65) rated as ‘Bad’ for the Soil Fertility 
Group, all of the 75 farms were rated ‘Good’ for soil organic matter, all but one farm rated ‘Good’ for soil 
physical condition, none of the sites were in need of soil drainage improvements, and only one site 
required application of lime . The main soil limitations identified in FarmGrow were the application and 
formulation of fertilizer. Seventy-seven percent of farms were rated ‘Bad’ for both fertilizer application 
and formulation. Only one farm was rated ‘Good’ for both fertilizer application and formulation, with the 
remainder having varying combinations of ‘Bad’ and/or “Medium’ for the two categories. 
 
Table 4. Summary of FarmGrow AOs for the 75 cocoa farms evaluated in this study 

Adoption Observations  

 Rating Categories Bad Medium Good 
Genetics    39 11 25 
Planting Material Bad, Medium, Good 39 11 25 
GAPS   75 0 0 
Pruning Bad, Medium, Good 70 2 3 
Pest, Disease, Sanitation Bad, Medium, Good 36 17 22 
Weeding Bad, Good 27   --  48 
Harvesting Bad, Good 9   --  66 
Shade Management Bad, Good 59   --  16 
Soil Fertility   65 9 1 
Soil Condition Bad, Good 1   --  74 
Organic Matter Bad, Good 0   --  75 
Fertilizer Formulation Bad, Medium, Good 64 10 1 
Fertilizer Application Bad, Medium, Good 59 14 2 

Farm Condition   45 -- 30 
Tree Age Bad, Good 30   --  45 
Tree Density Bad, Good 26   --  49 
Tree Health Bad, Good 13   --  62 
Debilitating Disease Bad, Good 13   --  62 

Soil Indicator Summaries 
Lime Bad, Good 1 -- 74 
Drainage Bad, Good 0 -- 75 



Map to the Future (M2F) page 15 

 
 

As a result of the AO assessments, the investment plan is created for each farmer. The investment plan 
lays out an 8- to 10-year picture for the farmer of the potential yield and resulting income they could 
receive through their farm improvements, based on the recommendations they are provided.  

There are six primary categories of recommendations provided to farmers. These recommendations 
include: 

• Replant (cut down old trees or diseased trees and replant with new planting material) 
• Extra Soil Management (increase use of organic matter, proper application and formulation 

of fertilizer) 
• Grafting (graft old trees with new planting material) 
• Maintenance GAPs (follow basic GAPs) 
• Thinning Out (remove some trees to meet recommended distance among trees) 
• Filling In (plant new trees to maximize plot space and meet the recommended distances 

among trees) 
• No Farm Development Plan (FDP; tree health and soil condition are both bad and it is not 

ideal for a farmer to plant cacao on the plot). 

Any farmer can receive a combination of these recommendations, usually resulting in no more than two 
recommendations per plot. Extra Soil Management is the only recommendation that is coupled with 
other recommendations. Once recommendations are made and farmers agree upon a plan with the 
agronomist, they are then monitored at agreed-upon intervals with the agronomist. During a monitoring 
visit, farmers are assessed on the GAPs as well as their achievement of their targets per the 
recommendations provided by FarmGrow. 

Based on the FarmGrow analysis, 97% of the 75 farms had agronomic recommendations that included 
some form of soil management (Figure 3). This is consistent with the majority of the farmers served by 
FarmGrow, whose results can be found elsewhere (Sarpong et al, 2020; Gray et al, 2020). Fertilizer 
application and formulation were identified as the main soil constraints affecting soil fertility, and 
therefore the agronomic recommendations of ‘Extra soil’ or ‘Extra Soil Management’ at 97% of farms 
can be almost exclusively attributed to these two factors (Figure 4). 
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Figure 3. FarmGrow agronomic recommendations for the 75 cocoa farms evaluated in this study 

 
Notes: FDP, Farm Development Plan (which means they were not provided an investment plan given the unsuitability of the 
plot for increasing cocoa productivity); Extra Soil and Extra Soil Management are the same recommendation.  
 
Figure 4. Evaluation of fertilizer application and fertilizer formulation ratings for the 75 cocoa farms 
evaluated in this study 

 
Notes: B, Bad; M, Medium; G, Good as assessed by FarmGrow agronomists for fertilizer application and fertilizer formulation 
 
2. FarmGrow + Soil Maps 
 
Soil maps provide a wealth of soil information essential to understanding land potential and informing 
GAPs that can optimize farm productivity. In this study we evaluated both traditional (HWSD/WISE) and 
digital (SoilGrids) soil maps. Traditional soil maps display soil map units (SMUs) representing distinct 
areas of a landscape composed of one or more soil series but do not show the exact location of each 
soil series. A common method for dealing with this spatial uncertainty is to assign any location within a 
SMU to its dominant soil series. SoilGrids and other digital soil mapping products offer an alternative to 
traditional soil maps by providing predictions of soil properties and classes at specific locations. These 
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modeled products, however, can have high levels of uncertainty in their predictions at point locations. 
Soils in Ghana are generally mapped at large spatial scales (e.g., 1:5,000,000 map scale: HWSD, 
WISE), resulting in a disconnect between the spatial scales at which soil map information is generated 
(and its underlying spatial uncertainty) and the scale at which most land-use decisions are made (e.g., 
point locations on a farm). In order to utilize soil map information for site-specific decision making, a 
better understanding of soil map accuracy is needed.  
 
Among soil properties, soil texture is one of the most agronomically important due to its influence on 
soil water availability, infiltration rate, drainage, tillage conditions and capacity to retain nutrients (Sys et 
al, 1993). Our evaluation of soil map accuracy was based on a statistical comparison of soil texture 
(i.e., percent clay and sand) and rock fragment volume measured by LandPKS and predicted by the 
different soil maps (see Appendix 3 for details on methodology). In our initial draft report (Appendix 2), 
we evaluated the relative accuracy of soil map information within the Northern Regions of Ghana due to 
the large number of existing LandPKS sites (~6K). In this initial evaluation of soil map accuracy, we 
found that the soil property estimates of SoilGrids were more accurate than either HWSD or WISE 
when compared to LandPKS soil data (Appendix 3, Figure 5a). However, our subsequent analysis of 
the 225 LandPKS sites (75 farms, 3 sites per farm) in the Ashanti and Western Regions of Ghana 
revealed that SoilGrids was the least accurate soil map, and that HWSD and WISE had higher 
accuracies when compared to LandPKS soil data in this area (Figure 5). Figure 5 shows boxplots of the 
dissimilarity (statistical distance) between LandPKS and soil mapped data for representative percent 
clay values (see Appendix 3 for more details). The middle of each boxplot indicates the median value. 
The upper and lower edges of each boxplot indicate the 75th and 25th percentiles, respectively. The 
ends of the vertical lines indicate the minimum and maximum data values. Circles above the box plot 
are outliers and the distance of the circles from the maximum measure (top line) represent the 
magnitude of the difference between the LandPKS data and the soil map data. In the Northern Ghana 
graph, Soil Grids data had fewer outliers and those were located closer to the LandPKS data; however, 
in the Cocoa Regions, the outliers were more extreme with the SoilGrids data. Clay dissimilarity is on 
an absolute scale, so a value of 0.2 would equal a 20% difference in clay between the LandPKS value 
and the predicted map value. SoilGrids is a digital soil mapping product and its accuracy is dependent 
upon the availability of training data in an area. The lower accuracy of SoilGrids in the cocoa growing 
regions is likely due to limited soil observations in these regions to train the SoilGrids models.  
 
Figure 5. Boxplots of clay dissimilarity (statistical distance) between LandPKS and soil mapped data for 
(a) Northern Ghana, and (b) Ghana’s cocoa regions. 
 

 

Figure . Clay dissimilarity between measured LandPKS values and estimated soil map values. Dissimilarity is on 
an absolute scale, so a value of 0.2 would equal a 20% difference in clay between the LandPKS value and the 
predicted map value. 
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The spatial distribution of cocoa farms sampled in this study are shown in Figure 6. A total of 75 cocoa 
farms (41 in Ashanti Region and 34 in the Western Region) were evaluated with three LandPKS sites 
sampled per farm, totaling 225 sites. Figure 6 also shows the spatial delineation of HWSD/WISE soil 
map units, with all the farms in both the Ashanti and Western Regions lying within a single map unit. 
Each of these map units are attributed with only one soil component: Haplic Acrisols in the Ashanti 
Region (SMU-A) and Xanthic Ferralsols in the Western Region (SMU-B). This lack of spatial 
resolution in the delineation of soil types severely limits their potential utility in helping inform 
soil management at the farm scale. Consequently, we would caution any direct integration of 
soil data from these map products with FarmGrow Adoption Observations. 

Figure 6. Location of the 75 cocoa farms sampled in this study. Polygons show the spatial location of 
HWSD/WISE soil map units (SMU).  

 

3. FarmGrow + LandPKS 
 
The FarmGrow soil fertility assessment is based on four different Adoption Observations, including, soil 
physical condition, organic matter, fertilizer formulation, and fertilizer application. The soil physical 
condition and organic matter content of the soil are assessed by a trained field technician, while the 
fertilizer formulation and application are self-reported by the farmers. FarmGrow uses a binary rating 
system (i.e., Good vs Bad) to assess both soil physical condition and soil organic matter content at 
each farm. LandPKS evaluates similar soil criteria used in FarmGrow but instead of a single binary 
rating, records quantitative evaluations of each soil property. We converted LandPKS soil property 
values to a binary based on FarmGrow soil evaluation criteria to allow for a direct comparison. Specific 

Figure . Clay dissimilarity between measured LandPKS values and estimated soil map values. Dissimilarity is on 
an absolute scale, so a value of 0.2 would equal a 20% difference in clay between the LandPKS value and the 
predicted map value. 
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rating criteria for FarmGrow and LandPKS are shown in Table 5. In addition to the soil Adoption 
Observations, FarmGrow also records two additional soil indicators: soil drainage and soil lime 
requirement. Similar indicators are also recorded in the LandPKS app. 
 
Table 5. FarmGrow and LandPKS rating criteria for organic matter condition and soil physical condition 
to achieve a ‘Good’ rating. 

Soil Property Criteria for a ‘Good’ rating 
Organic Matter Condition 
 FarmGrow ● Clear signs of microbial activity, AND 

● Multiple layers of decaying organic material, AND 
● Worms, worm castings, insect activity, soil pores, AND 
● Organic material left in the farm 

 LandPKS ● Many signs of organisms in the soil, OR 
● Fresh, sweet, earthy smell 

Soil Physical Condition 
 FarmGrow ● No signs of erosion, no roots visible on the surface AND  

● Few rocks or gravel on farm surface or in the ground as measured by 3 holes of 30 
cm deep per plot AND 

● Soil is neither too sandy or clayey as measured by touch/roll test on soil from 3 holes 
of 30 cm deep per plot AND 

● Well drained either naturally or through drainage canals AND 
● Slope < 15% 

 LandPKS ● No signs of erosion: water flow patterns = None or Rare; Rills= None or Rare; Gullies 
= None or Present/Inactive AND 

● Surface stoniness < 15%, surface rock fragment < 35% AND 
● Surface texture is not Sand, Loamy Sand, Clay, or Silty Clay AND 
● Flooding = None AND 
● Slope < 15% 

 
A comparison of the soil Adoption Observations and indicators for FarmGrow and LandPKS are shown 
in Table 6. For FarmGrow, all participating farms were rated as ‘Good’ for organic matter and drainage, 
and only one farm rated as ‘Bad’ for soil physical condition and lime requirement. In contrast, 10 farms 
were rated as ‘Bad’ for organic matter in LandPKS and 47 farms rated as ‘Bad’ for soil physical 
condition. No farms were identified as requiring lime and only four farms were rated as ‘Bad’ for 
drainage by LandPKS. The breakdown of individual soil properties contributing to the soil physical 
condition assessment for LandPKS are also shown in Table 6. Land slope and surface texture were 
rated as ‘Bad’ for roughly a third of all farms, followed by surface stoniness and soil erosion. Figure 7 
illustrates the breakdown of LandPKS organic matter ratings relative to the FarmGrow soil fertility 
ratings. While all the FarmGrow farm assessments were rated as ‘Good’ for organic matter, the 10 
farms rated as ‘Bad’ for organic matter by LandPKS fell in the ‘Bad’ category for FarmGrow soil fertility.   
For the LandPKS assessment of soil condition, most farms rated ‘Bad’ were also in the ‘Bad’ category 
for FarmGrow soil fertility (Figure 7). This indicates a general agreement between the two evaluation 
systems in terms of overall soil condition/potential, even though the factors contributing to those ratings 
differ. These results also suggest that the more detailed soil characterization performed by LandPKS 
was able to more accurately identify farms with suboptimal (i.e., ‘Bad’ or ‘Medium’) soil 
condition/potential. Consequently, there is clear benefit in the additional soil/site data collected by 
LandPKS in identifying factors that limit soil potential (i.e., static soil properties -- texture, rock 
fragments, depth) vs. those that limit crop productivity as a result of the soil condition (i.e., 
dynamic soil properties – organic matter, drainage, erosion) that can be improved over time.  
 

Table 6. Comparison of FarmGrow and LandPKS soil property ratings 
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 FarmGrow LandPKS 
FarmGrow Soil 
Properties Bad Good Bad Good 
organic matter* 0 75 10 65 
soil physical condition 1 74 47 28 
   -erosion* -- -- 8 67 
   -surface stoniness -- -- 13 62 
   -surface texture -- -- 20 55 
   -drainage* -- -- 4 71 
   -slope -- -- 25 50 
Lime requirement* 1 74 0 75 
Drainage* 0 75 4 71 

Notes: *Relatively dynamic soil properties indicate condition. Other soil properties (static) are a function of land type. 
 
Figure 7. Comparison of LandPKS organic matter (OM) and soil physical condition ratings in relation to 
the FarmGrow soil fertility ratings.  

 
Notes: B=Bad; M=Medium; G=Good 
 
 
4. FarmGrow + LandPKS + SoilID 
 
Integrating LandPKS soil/site characterization data with FarmGrow’s soil related Adoption Observations 
provides a significant improvement in our understanding of the soil limitations at a cocoa farm. The 
ability to accurately link soil observation data to soil map data at a site would significantly improve our 
understanding of soil limitations and potential. The accuracy of the SoilID matching is dependent upon 
the quality or accuracy of the input data, both the user-entered soil property data and the soil map data. 
In this study, the LandPKS soil property data was collected by field crews that were provided with 2 
days of training. Additionally, at a subset of study sites (n=10), the LandPKS data was validated by 
professional soil scientists. The quality or spatial resolution of the soil map data, however, was the main 
limitation for obtaining accurate site-specific soil data. Future work incorporating more detailed soil 
maps (Ghana soil survey map) would likely improve the accuracy of our site-specific soil data set. 
 
Translating Site-specific Soil Information into Agronomic Knowledge  
Information on inherent soil properties, like those measured by LandPKS (e.g., soil texture), can be 
used to inform farmer decisions on a variety of management practices such as irrigation frequency, 
need for organic amendments, likelihood of erosion, and so on. If soil type can be determined,  soil 
management decisions can be further tailored to a farmer’s specific soil needs for improving soil health, 
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including (for example) the use of modifiers (e.g. lime) of soil pH and the need for nutrient specific 
fertilization to address soil deficiencies. 
 
Translating site-specific soil information into agronomic recommendations, however, requires an 
understanding of how the soil property values at a given site affect the productivity of a particular crop. 
The Agro-Ecological Zones (AEZ) soil suitability modelling framework, developed by the Food and 
Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems 
Analysis (IIASA), uses soil data and detailed agronomic knowledge to quantify land productivity and 
crop-specific agronomic potential (user guide). We used the AEZ modeling framework to translate site-
specific soil information into crop-specific soil suitability ratings. 
 
Downscaling Global Agro-Ecological Zones (AEZ) Soil Suitability 
The current AEZ methodology uses HWSD soil property data to calculate crop-specific soil quality 
ratings for 54 different crop types at three different production input levels (low, intermediate, high). The 
AEZ modeling framework includes the calculation of seven crop-specific (in this case, for cocoa) soil 
quality indices. These indices include: (SQ1) nutrient availability, (SQ2) nutrient retention capacity, 
(SQ3) rooting conditions, (SQ4) oxygen availability, (SQ5) excess salts, (SQ6) toxicities (e.g., gypsum 
or calcium carbonate), and (SQ7) workability. The calculation of each soil quality index uses a unique 
set of soil property inputs. Based on the input level, these seven soil quality indices can be used to 
generate crop-specific suitability ratings (SR). In its current implementation, FAO AEZ soil quality 
indices are only available as spatial maps generalized at a 10 km grid resolution, a scale too large to 
reliably inform agronomic management at the farm scale.  We have taken the AEZ methodology and 
applied it at the soil map unit component scale, effectively downscaling the crop-specific suitability 
ratings to a scale more appropriate for farm-scale decision making. Additionally, we have further 
localized the suitability calculations by leveraging site-specific soil property data (e.g., LandPKS texture, 
rock fragments, soil depth) and the LandPKS SoilID algorithm to identify the most likely soil component 
at a point location. In Ghana’s cocoa growing regions, excess salts (SQ5) and toxicities relating to high 
gypsum or calcium carbonate (SQ6) are not relevant given the prevalence of highly weathered soils 
with neutral to low pH. Thus, crop-specific SRs in these regions will vary as a function of SQ1-SQ4, and 
SQ7. All calculations in this report were generated for the rain-fed irrigation type, since irrigation of 
cocoa in Ghana is rare. Figure 8 illustrates the general modeling framework for calculating area-specific 
(i.e., based on soil maps and the dominant soil type) and site-specific (i.e., soil maps + site data) soil 
suitability ratings for different crops. 
 
The ability to localize crop-specific soil suitability ratings requires substituting comparable soil property 
values measured at a site.  Table 7 shows the standard HWSD/WISE soil properties used to calculate 
each soil quality index and the equivalent or related soil properties from SoilGrids, FarmGrow, and 
LandPKS. The LandPKS soil properties listed in bold in Table 7 (i.e., texture, rock fragments, soil 
depth) were used to substitute HWSD/WISE soil properties in the site-specific soil suitability 
calculations. The AEZ soil suitability algorithm uses quantitative soil property input data. The additional 
site-specific soil properties in Table 7 (italicized) are related to the HWSD/WISE input properties but 
require additional work to formalize these relationships through statistical or logic-based approaches. 
 
Figure 8. Modeling framework for area-specific and site-specific soil suitability ratings 

Figure 8. Modeling framework for area-specific and site-specific soil suitability ratings 
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Farm Input/Management Levels 
Three generic levels of input/management are evaluated in the AEZ modeling framework: low, 
intermediate, and high input levels. Each input level, with its distinct set of cultivation practices and farm 
inputs, varies in its response to different soil conditions. Farming systems with low input levels (i.e., 
traditional management) are largely subsistence based. These types of farms use traditional cultivars, 
labor intensive management practices, no application of nutrients, herbicides, or pesticides, and 
minimum conservation measures. At the intermediate input level (improved management) the farming 
operation is partially market oriented where some portion of production is for commercial sale in 
addition to production for subsistence. These farming systems use improved varieties, some use of 
animal traction and/or mechanization, some use of fertilizers, herbicides, and pesticides, adequate 
fallows, and some conservation measures. Farming systems at the high input level (advanced 
management) are mainly market oriented and managed for commercial production. These systems use 
high yielding varieties, are fully mechanized with low labor requirements, and use optimal applications 
of fertilizers, herbicides, and pesticides. Using FarmGrow AO scores on fertilization for the 75 farms 
assessed, the M2F team would classify 59 farms as low-input farms, 16 as intermediate input-
farms and none as high-input farms. Despite some farmers receiving a “good” assessment on 
fertilization practices, they are not classified as high-input systems due to the fact that an underlying 
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assumption of FarmGrow GAPs is that fertilization recommendations are typically being made to 
farmers with older trees that do not fully benefit from fertilizer. Fertilization recommendations focus 
more on nutrient replacement and not on maximizing yield potentials, due the cost implications.  
 

Table 7. Relevant soil properties used to calculate AEZ soil quality indices in Ghana’s cocoa growing 
regions 

Soil Quality Indices Soil Maps Site-Specific Soil Data† 
 HWSD/WISE SoilGrids FarmGrow LandPKS 
SQ1: Nutrient 
availability 

texture, organic 
carbon, pH, total 
exchangeable bases 

texture, organic 
carbon, pH 

organic matter, 
pH 

texture, soil smell, 
biological activity, 
lime requirement 

SQ2: Nutrient retention 
capacity 

texture, base 
saturation, pH, 
cation exchange 
capacity (soil/clay) 

texture, pH, cation 
exchange capacity 

pH, lime 
requirement 

texture, lime 
requirement 

SQ3: Rooting 
conditions 

soil depth, texture, 
rock fragments, soil 
phases 

soil depth, texture, 
rock fragments 

soil physical 
condition, 
drainage 

soil depth, texture, 
rock fragments, 
compaction layer, 
vertical cracks, water 
table depth 

SQ4: Oxygen 
availability 

soil drainage class, 
soil phases 

texture soil physical 
condition, 
drainage 

water table depth, 
flooding, texture 

SQ7: Workability soil depth, texture, 
rock fragments, soil 
phases 

soil depth, texture, 
rock fragments 

soil physical 
condition 

soil depth, texture, 
rock fragments, 
compaction layer, 
vertical cracks 

Notes: † Soil properties in italics indicate properties that are related to the original HWSD/WISE inputs but require additional 
work to formalize these relationships (e.g., pedotransfer functions). 
 
The relative importance of the different soil quality indices varies for each farm input level due to 
differences in agronomic inputs and management practices. For example, at the low input level, the 
inherent fertility of a soil, as measured by its nutrient availability (SQ1), is a dominant factor 
controlling crop productivity. Nutrient retention capacity (SQ2) on the other hand, is less 
important since there is no fertilizer application in low input systems. In high input systems the 
opposite relationships are found. Nutrient availability is of no consequence in high input 
systems due to optimal fertilizer application, while nutrient retention capacity or the ability of 
the soil to retain applied nutrients is of utmost importance. In Ghana’s cocoa growing regions we 
used the five soil quality indices listed in Table 7 to calculate the soil SR for cocoa (Fig. 8). The soil 
property ratings used to calculate each of the soil quality indices differs across the three farm input 
levels due to differences in agronomic inputs and cultural practices. Furthermore, the calculation of the 
soil SR at each input level differs based on the changing importance of the individual soil quality indices 
as discussed above.  This ability to calculate soil suitability as a function of farm input level 
makes it possible to conduct a cost-benefit analysis of crop intensification. Since soil infertility 
is recognized as the dominant soil constraint for cocoa production, understanding the soil’s 
response to fertilization will assist farmers in optimizing their return on investment. 
 
Area-specific vs. Site-specific Soil Suitability in Ghana’s Cocoa Growing Region 
Farmers need accurate information on crop-specific soil suitability. AEZ soil suitability provides a 
methodology for achieving this but requires accurate soil information at the farm scale. This study 
evaluated two downscaling approaches:  the first represents an area-specific soil suitability using soil 
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data from the HWSD/WISE dominant map unit component at a location (FarmGrow + Soil Map test 
case) and the second represents a site-specific soil suitability using the HWSD/WISE SoilID map unit 
component data combined with LandPKS soil property data (FarmGrow + LandPKS + SoilID test case) 
(Fig. 8). While both downscaling approaches are an improvement over the current regional 
implementation of AEZ, the site-specific soil suitability provides the most accurate estimation of 
soil limitations due to its incorporation of localized soil information. Figure 8 illustrates these two 
downscaling approaches where soil data is used to calculate the seven soil quality indices, and these 
soil quality indices are then used to calculate a final soil suitability rating for the site.  A comparison of 
area- vs. site-specific soil suitability ratings showed they have the highest agreement at the 
intermediate farming input level (i.e., 94% match = 211 sites), followed by the low (66% match = 150 
sites) and high (45% match = 102 sites) input levels (Table 8). At the low input level, site-specific 
soil suitability ratings were higher (i.e., less constrained) than area-specific suitability for the 
majority of no-match cases. In contrast, at the high input level site-specific soil suitability ratings were 
lower (i.e., more constrained) than area-specific suitability for the majority of no-match cases (Tables 8 
and 9).  
 
Results from this analysis demonstrate the importance of site-specific soil data for understanding a 
soil’s agronomic limitations and the feasibility of soil management interventions for improving crop 
yields. Relying on area-specific map data may lead to an under or overestimation of land capability and 
thus fail to identify the soil management actions needed to improve cocoa yields. When smallholder 
farmers have limited resources (financial, human, etc.), these differences could mean success or failure 
or limited impact of the investments they are making. For example, recommending costly fertilizer could 
be a waste of money if the soil is not able to provide long-term nutrient retention, which may be 
detrimental if households are making tradeoffs between paying for fertilizer vs school fees or health 
care. 
 
Table 8. Comparison of site-specific and area-specific soil suitability ratings by farm input levels 

Suitability* Low Input Intermediate Input High Input 
Match 150 211 102 
Lower 23 14 96 
Higher 52 -- 27 

Notes: *Soil suitability is evaluated as: match = site-specific and area-specific soil suitability are the same; lower = site-specific 
is lower than area-specific soil suitability; higher = site-specific is higher than area-specific soil suitability. 
 
Table 9. Area-specific and site-specific cocoa soil suitability ratings for low, intermediate, and high input 
farming systems. 

 Low Input Intermediate Input High Input 
Suitability* Area-

specific 
Site-specific Area-

specific 
Site-specific Area-

specific 
Site-specific 

S0 -- -- -- -- 123 61 
S1 -- -- -- -- 102 131 
S2 123 156 225 211 -- 20 
S3 102 58 -- 4 -- 3 
S4 -- 1 -- -- -- -- 
N -- 10 -- 10 -- 10 

Notes: *S0:  No constraint (100%-95%); S1:  Slight constraint (95%-85%); S2:  Moderate constraint (85%-60%); S3:  Severe 
constraint (60%-40%); S4:  Very severe constraint (40%-10%); N:  Not suitable (<10%) 
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Case Study 1: FarmGrow-LandPKS Soil Suitability for a Cocoa Farm 

Case Study 1 illustrates how the crop-specific soil suitability framework may be used to develop 
appropriate, localized soil management recommendations that farmers can implement to improve 
cocoa yields. We demonstrate the application of this approach on a smallholder cocoa farm in Ghana’s 
Ashanti Region. Our example farm is 23 years old, has an average yield of 320 kg/ha, and has a 
current FarmGrow recommendation to replant plus extra soil management (Table 10). 
 
Table 10. Location and general characteristics of the case study cocoa farm  

Region Ashanti 
District New Edubiase A 
Village Adansi Praso 
Plot Name P-00002454-2 
Productivity 320 kg/ha 
Farm Age 23 
Additional Crops Rice 
FarmGrow Recommendation Replant + Extra Soil 

 
This FarmGrow recommendation is based on the 14 Adoption Observations shown in Table 11, which 
shows all four of the Adoption Observation groups (shown in bold) rated ‘Bad’ for this site. Among the 
soil related Adoption Observations, we see that both soil physical condition and organic matter were 
rated ‘Good’, while both fertilizer formulation and application were rated ‘Bad’. From the LandPKS 
assessment of this site, organic matter was rated ‘Good’, while physical soil condition was rated ‘Bad’ 
due to the sandy surface texture (Table 12). Figure 9 shows photos of the sampling site, soil profile and 
soil samples. The soil profile photo (Figure 9, center) shows a uniform layer of sand for 0-50 cm, 
underlain by a redder clay loam layer high in rock fragments (Table 12, LandPKS).  
 

Figure 9. Photos of sampling site P-00002454-2 

 
Table 11. FarmGrow AO ratings at case study farm 

FarmGrow Adoption Observations Rating 
Genetics Bad 
GAPS Bad 
   Pruning Bad 
   Pest, Disease, Sanitation Medium 
   Weeding Bad 
   Harvesting Good 
   Shade Management Bad 

Figure 9.  Site and soil photos at our case study farm. From left to right: cocoa tree adjacent to soil pit; soil profile 
with measuring tape for reference; soil samples at the five standard LandPKS depths. 
Figure 9.  Site and soil photos at our case study farm. From left to right: cocoa tree adjacent to soil pit; soil profile 
with measuring tape for reference; soil samples at the five standard LandPKS depths. 
Figure 9.  Site and soil photos at our case study farm. From left to right: cocoa tree adjacent to soil pit; soil profile 
with measuring tape for reference; soil samples at the five standard LandPKS depths. 
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Soil Fertility Bad 
   Soil Condition Good 
   Organic Matter Good 
   Fertilizer Formulation Bad 
   Fertilizer Application Bad 
Farm Condition Bad 
   Tree Age Good 
   Tree Density Bad 
   Tree Health Good 
   Debilitating Disease Good 

 
 
A comparison between the LandPKS measured soil property values and the soil property values 
mapped at this location showed a similar trend, with a uniform coarse textured, low rock fragment layer 
from 0-50 cm, followed by a finer-textured layer (50-70 cm) with high rock fragments (Table 12). 
However, the surface soil texture determined on-site by the observers using the texture key in 
LandPKS is considerably coarser than the mapped surface texture (~92% sand vs. 63% sand). 
 
Table 12. Comparison of texture and rock fragment classes between HWSD/WISE dominant soil map 
unit component data and LandPKS measured data 

 
This difference in surface soil texture influences both the intrinsic soil nutrient availability, as well as the 
ability of the soil to retain nutrients added through fertilization. This is illustrated in Table 13 where the 
nutrient availability (SQ1) was rated as a severe constraint (S3) based on the measured soil property 
data (LandPKS + SoilID), compared to a moderate constraint (S2) for the soil map data. For nutrient 
retention capacity (SQ2), both area- and site-specific calculations were rated as having a slight 
limitation (S1) for the low and intermediate levels where little-to-no fertilizer is applied. At the high input 
level where optimal levels of fertilizer are applied, the SQ2 rating increases to no constraint (S0) for the 
area-specific case and drops to a moderate constraint (S2) for the site-specific case. This indicates 
that the sandy surface texture measured at the site limits the ability of the soil to retain added 
nutrients.  
 
Based only on soil map data, optimal fertilizer application (high input) would increase the soil suitability 
for cocoa production from being moderately constrained (S2) at the low and intermediate farming 
levels, to having no constraints (S0). However, based on our measured soil property data at this site, 
the suitability of the site would increase slightly from a low to intermediate input system (S3 to S2 with 
minimal nutrient additions), but would not be improved by optimal fertilizer application due to its sandy 
texture and limited ability to retain the added nutrients (Table 12). Therefore, the specific 
recommendation to replant and provide extra soil management or any blanket 
recommendations to this particular farmer to apply fertilizer may not represent the best return 
on investment, particularly for a resource-constrained and low-income farmer. Alternative 
management strategies for this soil would include the application of organic forms of nutrients that are 
slowly made available to crops over longer periods of time but this would likely not be sufficient for 
newly-planted cocoa trees to achieve the goal of 1500 kg / hectare given the overall low nutrient and 

 Soil Maps LandPKS 
Depth (cm) Texture Rock Fragments Texture Rock Fragments 

0-1 sandy clay loam 1-15% sand 1-15% 
1-10 sandy clay loam 1-15% sand 1-15% 
10-20 sandy clay loam 1-15% sand 1-15% 
20-50 sandy clay loam 1-15% sand 1-15% 
50-70 sandy clay 15-35% clay loam 35-60% 

Figure 9.  Site and soil photos at our case study farm. From left to right: cocoa tree adjacent to soil pit; soil profile 
with measuring tape for reference; soil samples at the five standard LandPKS depths. 
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moisture retention that would be needed for newly-established trees. Alternative crops may be needed 
for this soil but farmers or the agronomists that support them would need to calculate and balance the 
return on investment compared to cocoa and the land tenure issues that encourage continued use of 
cocoa or other long-term tree-based crops.2  
 
Table 13. Cocoa soil suitability at case study farm based on HWSD/WISE soil map and LandPKS + 
SoilID data 

Soil Quality Index Area-Specific Site-Specific 
 (Soil Map) (LandPKS + SoilID) 
Farm Management Level Low Int. High Low Int. High 
 ---------------   soil quality ratings (%)   --------------- 
SQ1: Nutrient availability 71% 71% -- 53% 53% -- 
SQ2: Nutrient retention capacity 89% 89% 97% 89% 89% 65% 
SQ3: Rooting conditions 100% 100% 100% 100% 100% 100% 
SQ4: Oxygen availability 100% 100% 100% 100% 100% 100% 
SQ7: Workability 100% 100% 100% 100% 100% 100% 
Suitability Rating (SR) 71% 80% 97% 52% 71% 65% 
Suitability Class* S2 S2 S0 S3 S2 S2 

Notes: *S0:  No constraint (100%-95%); S1:  Slight constraint (95%-85%); S2:  Moderate constraint (85%-60%); S3:  Severe 
constraint (60%-40%); S4:  Very severe constraint (40%-10%); N:  Not suitable (<10%) 
 
Since fertilization is a common recommendation to improve soil quality, gaining a deeper understanding 
of how soils will respond to nutrient additions is essential if we are to optimize a farmer's return-on-
investment. With growing interest in sustainable intensification, this approach provides a framework to 
evaluate how soils will likely respond to changes in management practices, and therefore allows 
farmers to refine and improve their management activities over general blanket recommendations.   
 

Case Study 2: FarmGrow-LandPKS Soil Suitability for Farm Diversification  

As mentioned earlier, the AEZ framework can calculate crop-specific soil quality and soil suitability 
ratings for 54 different agricultural crops. A farmer interested in diversifying their farm either through 
agroforestry practices or through converting from cocoa to another crop can evaluate the suitability of 
their soil for that crop. In our test case, the farmer described above in Case 1 also grows dryland rice in 
addition to cocoa. Table 14 shows the soil quality and soil suitability ratings for dryland rice at our 
example farm. 
 
Soil quality results for dryland rice were similar to those of cocoa. The sandy soil texture in the top 50 
cm of the soil affects the soil’s intrinsic fertility and ability to retain nutrients, both of which are 
limitations for most agricultural crops. For dryland rice, the nutrient availability rating (SQ1) was 
slightly higher and nutrient retention capacity (SQ2) slightly lower than cocoa for the low and 
intermediate input systems at this site. In high input farming systems the SQ2 ratings were similar for 
the two crops, with area-specific ratings over estimating crop suitability relative to site-specific 
estimates (Table 14). For the overall soil SR, growing dryland rice in a low-input system is predicted to 
face a severe constraint (S3) based on the measured soil property data (LandPKS + SoilID) compared 

                                                             

2Under traditional land tenure agreements in Ghana, a farmer’s land rights are tied to the trees growing on the land. Cutting 
down cocoa trees without replanting new ones can result in a farmer losing their lease of the land, particularly given the limited 
use of documented land agreements. This results in few incentives to rehabilitate farms or grow alternative crops.  
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to a moderate constraint (S2) for the soil map data. In a high input system, dryland rice would face 
moderate constraints based on soil property data (LandPKS + SoilID) compared to slight constraints 
based on soil map data (Table 14). These results indicate the need for soil management 
recommendations similar to cocoa, where soil nutrient additions need to be judiciously applied in order 
to prevent nutrient losses due to the soil’s low nutrient retention capacity. 
 
Table 14. Dryland rice suitability at our case study farm based on soil map and LandPKS data applied 
to the FAO’s AEZ soil suitability modelling framework 

AEZ Soil Quality Index Area-Specific Site-Specific 
 (Soil Map) (LandPKS + SoilID) 
Farm Management Level Low Int. High Low Int. High 
 ---------------   soil quality rating (%)   --------------- 
SQ1: Nutrient availability 84% 84% -- 60% 60% -- 
SQ2: Nutrient retention 
capacity 

77% 77% 94% 79% 79% 64% 

SQ3: Rooting conditions 100% 100% 100% 100% 100% 100% 
SQ4: Oxygen availability 100% 100% 100% 100% 100% 100% 
SQ7: Workability 100% 100% 100% 100% 100% 100% 
Suitability Rating (SR) 84% 81% 94% 59% 69% 64% 
Suitability Class* S2 S2 S1 S3 S2 S2 

Notes: *S0:  No constraint (100%-95%); S1:  Slight constraint (95%-85%); S2:  Moderate constraint (85%-60%); S3:  Severe 
constraint (60%-40%); S4:  Very severe constraint (40%-10%); N:  Not suitable (<10%) 
 

Lessons Learned 

 
Technical Challenges and Organizational Experience 
The M2F project started in late February 2020 and shortly after, the COVID-19 pandemic caused the 
lockdown of countries globally, including Ghana where the project was executed and the United States 
where technical resources were coming from. The rapidly changing and challenging situation posed by 
the COVID-19 pandemic created challenges for this project, but we were able to move forward without 
substantial changes to our research plan. Through the local Grameen office in Ghana, we were able to 
work effectively through video and phone calls to identify local resources that could support the 
research activities remotely. Whatsapp was used to monitor field activities closely and get 
instantaneous feedback. Through these early efforts we were able to enlist the help of Dr. Edward 
Yeboah of CSIR - Soil Research Institute. Dr. Yeboah’s team led the soil training activities for the 
contractor, Escape Poverty Africa, who carried out all the field data collection. Establishing a strong 
collaboration with the CSIR - Soil Research Institute early in the project was a critical factor allowing us 
to carry out all of our planned research activities. The LandPKS soil sampling activities occurred during 
Ghana’s rainy season which significantly slowed the data collection efforts and required continued 
adjustments to the sampling protocols (Appendix 3). Despite these obstacles, we were able to sample 
225 cocoa sites.  In addition, the team planned to have two in-person workshops, one in Ghana and 
one with World Bank staff in the United States, to share results as well as engage stakeholders in 
fruitful conversations regarding the implications of the research. At the time of writing this report, these 
in-person events were changed to a virtual event that would be held in early 2021. While in-person 
engagements would have been preferable, holding a virtual event will allow a wider range of actors to 
participate and engage with the research.  
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Potential for Replicability and Scalability 
A main goal of this study was to investigate methods of integrating site-specific soil data with traditional 
soil map data in an effort to improve smallholder agronomic recommendations. An important 
consideration in this work was the ability to replicate and scale our data collection and modeling 
approach. Gathering site-specific soil data is often labor intensive and costly to implement at a large 
scale. The LandPKS app simplifies the soil data collection process, making it more feasible for 
agronomists and farmers to collect soil data and gain benefit.  This study conducted a complete 
LandPKS soil and site characterization at the 225 cocoa sites which limited the number of sites we 
could visit within the sampling time-frame. The LandPKS sampling protocol could be simplified in future 
efforts through adjusting the sampling method. For example, sampling soil depths with an auger, 
minimizing the number of sampling depths (e.g., 0-30, 30-100 cm), measuring fewer soil properties 
(e.g., only texture and rock fragments). These types of adjustments can significantly streamline the soil 
sampling process and make it more feasible for larger-scale sampling efforts. A simplified LandPKS 
sampling methodology could still be incorporated into the AEZ soil suitability modelling framework, 
allowing for its broad-scale application. In the case of cocoa farming systems, we know that more than 
80% of the cocoa root system is in the top 30 cm of the soil. Therefore, future LandPKS sampling 
efforts in cocoa systems could limit the soil sampling depth to 30 cm and limit the measured soil 
properties to texture and rock fragments. These changes to the sampling protocol would significantly 
shorten the time required to sample each farm site. Similar modifications can be made in other projects 
based on the known characteristics and requirements of different crops. 
 
The direct implication of this research to FarmGrow is that 1) there is limited benefit of integrating soil 
map data without the benefit of site-specific soil data supplied through an application like LandPKS and 
given the inaccuracies of the soil map data predicting soil conditions for cocoa farmers and 2) the long-
term investment plan could benefit from integration with applications such as LandPKS that provide 
site-specific soil recommendations.  As part of the FarmGrow product roadmap, such site-specific soil 
recommendations that support a modified investment plan that includes crop diversification and soil 
health management practices to improve the farmer’s return on investment, beyond optimization of 
fertilizer use, would be more responsive to the income needs of farming households to make 
investments, such as farm rehabilitation or renovation.  While it is not the purpose of this study to delve 
into the cost/benefit analysis of including a more rigorous site-specific soil data collection process into 
the FarmGrow processes, we believe that it merits further study and that approaches on data collection, 
especially during initial farmer profiling,  can be streamlined to keep the service costs at a reasonable 
level. Some farmer observation data could be replaced with data collected through the LandPKS app 
(e.g., LandPKS’s LandInfo and SoilHealth modules), therefore reducing agronomist or farmer error. 
 
Opportunities for Other Farmer Decision Support Tools  
Crop-specific decision support tools, like FarmGrow for cocoa smallholder farmers, provide a robust 
framework for understanding agronomic limitations. LandPKS, in contrast, is crop-agnostic, providing 
farmers and agronomists a systematic framework for measuring site-specific soil property information.  
Most farmer decision support tools are deficient in soil information and therefore the integration of these 
crop-specific tools with more generalized soil tools like LandPKS can provide significant benefit. While 
there was a clear benefit to integrating FarmGrow and LandPKS, future applications of the modeling 
approach presented in this study do not require crop-specific application like FarmGrow. Current and 
future World Bank projects only interested in soil specific crop limitations could use the LandPKS and 
AEZ modeling framework, allowing for broader scale application. 
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Conclusion and Future Refinement 

 
This research project integrated site-specific soil data with traditional survey data to explore the 
feasibility of supporting World Bank projects which aim to improve the productivity of small-holder 
cocoa farmers. It focused on whether integrating new and traditional sources of available data could 
generate more insights into soil quality to inform current (and future) World Bank projects seeking to 
strengthen yield potential for smallholder cocoa farmers in Ghana. Healthy soils are essential for the 
productivity of cocoa farms to produce pods and repair damaged parts of the trees.  Gaining a deeper 
understanding of how soils will respond to nutrient additions is essential if World Bank projects are to 
help farmers identify efficiencies that lead to higher productivity and profitability, lower input costs, and 
optimized fertilizer use.  
 
Long-term soil degradation, and in particular soil infertility, is recognized as one of the main factors 
limiting cocoa yields in Ghana. The research team sought to leverage data from FarmGrow, LandPKS 
and existing soil maps to provide a more accurate assessment of the inherent soil properties that may 
affect crop yields. However, a major limitation in assessing farm scale soil suitability and limitations lies 
is acquiring accurate soil property data. In our initial analysis of soil map data in Northern Ghana, we 
found SoilGrids was the most similar to LandPKS soil data. However, our more recent analysis in the 
Ashanti and Western regions revealed that SoilGrids was the least similar to LandPKS. This illustrates 
the variable accuracy of soil map products. Additional analysis is needed to further evaluate factors 
affecting soil property similarity (e.g., land-use, climate, topography) so that we can better understand 
which soil map areas provide accurate predictions and where they are less reliable. We are hopeful that 
the use of higher resolution mapping products such as the national Ghana Soil Map, with a map scale 
of 1:400,000, will provide even more accurate predictions of soil properties. 
 
For FarmGrow cocoa farmers, location-specific soil data generated by the LandPKS app has the 
potential to provide tailored information for a farm’s specific need, particularly around optimizing 
fertilizer use for improved soil health.  However, as a result of this research we recognize the need to 
be mindful of inherent soil properties and fertilizer efficiency. Given that most cocoa farmers in Ghana 
are practicing low-input farming on depleted cocoa soils, any blanket-application of fertilizer without 
knowledge of the site-specific soil condition may fail to provide the expected benefits. While site-
specific soil data is essential for making informed soil management decisions, acquiring the data is 
often cost-prohibitive.  
 
Therefore, future efforts to streamline the soil sampling process would be needed in order to 
allow FarmGrow agronomists to integrate this data with their current data collection efforts. 
Future refinement of this work may also include integration of the site-specific AEZ soil 
suitability analysis into apps such as FarmGrow and LandPKS. This would allow end users in 
low resource settings to identify crops most suited for intercropping with cocoa based on their 
soil’s condition, in an effort to improve soil fertility through increased biodiversity on cocoa 
farms.  
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Appendix 1: FarmGrow Cocoa Adoption Observations 

 
Adoption Observations and Rationale 

Adoption Observations Mechanism to 
monitor 

Rationale 

Plant 
Material 

1. Planting 
Material - 
Genetic 
Potential 

Interview and 
Observation 

Plant material determines maximum yield - it must produce 
1.5 MT/ha or more 

Farm 
Condition 

2. Tree Age Interview and 
Observation 

Trees over 25 yrs. old must be replaced as they are or will 
soon be in decline 

3. Tree 
Density 

Observation We need maximum production per ha and need between 
800 - 1350 trees/ha 

4. Tree Health Observation If many trees are in poor health, it is better to replace 
5. Debilitating 
Disease  

Observation If there is a disease such as CSSV, trees must be replaced 

GAP 6. Pruning Observation Only good pruning will ensure both energy and  nutrient 
sequestration to pods 

7. Pest and 
Disease (P&D) 
and Sanitation 

Observation Only good P&D management will protect high pod load 

8. Weeding Observation Good weeding allows fertilizer uptake by trees 
9. Harvesting Observation Good harvesting (leave nothing on the tree) to reach highest 

production 
10. Shade 
Management 

Observation Light shade is wanted to allow enough sunlight, but also 
some stress protection 

Soil 11. Soil 
Condition (pH 
separately) 

Observation Only good soil condition (not too argillic, sandy, rocky etc.) 
allows high yield 

12. Organic 
Matter 

Observation Organic matter supports high microbial activity 

13. Fertilizer 
Formulation 

Interview We need all nutrients, and in the right ratios, whilst we avoid 
Urea and Ammonia 

14. Fertilizer 
Application 

Interview We need enough fertilizer, in the right place at the right time 
to support 1.5 MT/ha 

 
Adoption Observations and Assessment Summary 

Rating  Criteria 
A. Plant Material Genetics 
Plant Material: What is the yield potential of planting material used at the farm? 
Good Interview: 

• >80% of Plant Material sourced after 1990 from research station, extension service, accredited 
plant material distributor OR  
• if historical known Yield reached 1500kg/ha  
 
Field observation: 
• Identification of clone or hybrid OR 
• If in peak season: yield on tree  
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Medium Interview: 
•  >80% of Plant Material sourced before 1990 from research station, extension service, accredited 
plant material distributor OR 
• if historical known Yield was between 900-1500kg/Ha  
 
Field observation: 
• If in peak season: yield on tree 

Bad Interview: 
• Plant Material source not known or taken from farms with unknown parentage OR 
• if historical known Yield never reached 900 kg/Ha  
 
Field observation: 
• If in peak season: yield on tree OR 
• other indicators of low yield potential i.e. 70/30 yield distribution 

B. Farm Condition 

B1: Tree age: Are the trees above or below the theoretical maximum production threshold? 

Good Interview: 
• <26 years 
 
Observation: 
• best judgement 

Bad Interview: 
• 26 years and older (age 25 - 30 graft or replant, > 30 only replant) 
 
Observation : 
• best judgement 

B2. Tree density: Does the density of trees support targeted production per hectare? (i.e. spacing 
between trees as proxy to number of trees and average density) 

Good Observation: 
• Farm has adequate density (800 – 1320 trees per ha) 

Bad Observation: 
• Farm has poor density (<800 trees per ha or more than 1320 tree/ha) 

B3. Tree health: Are the trees on a farm healthy enough to support targeted yield?  

Good Observation: 
• >80% trees are healthy and without physical damage 

Bad Observation: 
• >20% of trees look unhealthy with irreparable problems (i.e. cannot be fixed by GAP or soil 
management) OR 
•20% of trees with physical damage  

B4. Debilitating disease: Is the farm free of any signs of major diseases that may imperil the farm? 

Good Observation: 
No observable CSSV on the farm 

Bad Observation: 
Evidence of CSSV on the farm  

C. Good Agricultural Practices 



Map to the Future (M2F) page 33 

 
 

C1. Pruning 
Good Observation: 

Hybrid Trees, >90% of trees must have: 
• Max height of the tree: < 4.5 m AND 
• 3-5 main branches AND 
• All main branches visible AND 
• >50% of leaves capture direct light AND 
• Good aeration under and in the tree canopy AND 
• chupons on <10% of trees 
 
Other criteria to support positive judgement 
• Height of Jorquette: <1.5m AND  
• Branches exhibit vertical growth habit  AND 
• Canopies of trees do not touch (CSSVD prevention) AND 
• Mostly single stem trees  
 
Clonal Trees, major criteria of all trees: 
Observation: 
• Height of tree < 3.5 m AND 
• 2-3 main branches, in balance, clearly visible AND 
• >75% of leaves capture direct or a lot of indirect light AND 
• good aeration in the whole farm AND 
• chupons on <10% of trees 
 
Other criteria (to support positive judgement) 
• Branches exhibit vertical growth habit AND 
• Canopies of trees do not touch each other (CSSVD prevention)  

Medium Observations: 
Hybrid Trees, >90% of trees must have: 
• Max height of the tree: < 5 m AND 
• 2-5 main branches, in balance AND 
• all main branches are visible AND 
• 50% of leaves likely to capture direct and indirect light AND  
• good aeration AND 
• Chupons on <25% of trees 
 
Other criteria to support positive judgement 
• Height of Jorquette: 1.5-2m AND  
• Branches exhibit at least some vertical growth habit AND 
• <25% - 50% of canopies of trees touch each other AND 
• Mostly single stem trees 
 
Observations: 
Clonal Trees, >90% must have: 
• Height of tree < 4.5 m AND 
• Max 4 main branches, in balance, clearly visible AND 
• 50-75% of leaves likely to capture light AND 
• Good aeration  
 
Other criteria to support positive judgement 
• Branches exhibit mostly vertical growth habit AND 
• Some (<25%) canopies of trees touch each other AND 
• Chupons on <10% of trees 
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Bad Observations: 
Hybrid Trees, most trees on the farm have  
• Height of the tree: > 5m OR 
• Only one stem until crown or >5 main branches, poor balance, some or most main branches not 
visible OR 
• Most  leaves are not likely to capture light and trees are not aerated well under or within the 
canopy 
• >25% chupons on the trees 
 
Other criteria (to support negative judgement) 
• Height of Jorquette: >2m OR 
• Most branches have horizontal growth habit  OR 
• >25% of canopies of trees touch each other OR 
• many multiple-stem trees (>25%) 
 
Observations: 
Clonal trees, most trees have 
• Height tree > 4.5 m OR 
• >3 main branches, poor balance, most branches not visible OR 
• <50% of leaves do not capture enough light OR 
• poor aeration under or within canopy OR 
 
Other criteria (to support negative judgement) 
• Branches exhibit mostly horizontal growth habit OR 
• >50% of canopies of trees touch each other OR 
• >25% chupons on the trees 

C2. Pest, Disease and Sanitation: What is the Pest and Disease (P&D) and Sanitation condition for 
supporting or limiting the yield potential of the planting material?  

Good Observation: 
P&D 
• Spread of pest disease is low measured by few pods and branches affected on < 10% of the trees 
OR only in a few pockets on <10% of farm area) AND 
• the P&D presence causes little loss  
 
Sanitation 
• trees are nearly free of diseased, damaged, wilted, dead or mummified pods, epiphytes, or ant 
nests and tunnels AND    
• no diseased plant material on the ground near the tree 

Medium Observation: 
P&D 
• < 25% of trees have significant presence of non-debilitating diseases on pods, stems and 
branches leading to loss of <15%   
 
Sanitation 
• < 25% have diseased, damaged, wilted, dead or mummified pods, epiphytes, dead branches, or 
ant nests and tunnels AND 
• <25% of land have some diseased plant material on the ground near the tree 
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Bad Observation: 
P&D 
• > 25%) have significant presence of non-debilitating diseases on pods, stems and branches 
leading to significant loss of >20%  OR 
• The spread of diseases to many trees all over the farm 
 
Sanitation 
• > 25% of trees have diseased, damaged, wilted, dead or mummified pods, epiphytes, dead 
branches, or ant nests and tunnels OR 
• >25% of land has diseased plant material on the ground near the tree 

C3. Weeding: What is the weeding condition for supporting or limiting the yield potential of the planting 
material?  

Good Observation: 
• The ground under the canopy of trees is kept clean of undesired undergrowth and very little weed 
is visible 

Bad Observation: 
• Undesired undergrowth or weeds up to knee height on >10%) of the farm and outside canopy of 
cocoa trees OR 
• >10% of area under canopy of cocoa trees has weeds 

C4. Harvesting: What is the harvest condition for supporting or limiting the yield potential of the 
planting material?  

Good Observation: 
• Few over-ripe pods on maximum 10% of the trees AND 
• <10% under-ripe pods harvested (if this can be observed) 

Bad Observation: 
• >10% of trees have over-ripe pods OR 
• >10% of harvested pods are under-ripe (if this can be observed) 

C5. Shade: What is the shade level for supporting or limiting the yield potential of the planting 
material?  
Good Observation 

• Good shade is light shade which can be measured by 70 - 80% of sunlight reaching the canopy of 
most cocoa trees OR presence of 12 to 18 large shade trees of >20 m tall per ha AND 
•  >75% cocoa trees receive shade during part of the day  AND 
• Shade trees are compatible with cocoa i.e. no host of disease, no competition for root or canopy 
space, no breaking branches 

Bad Observation: 
Bad shade is insufficient shade or too much shade which is measured by  <70% or more than 80% 
of sunlight reaching the canopies of most cocoa trees OR < 12 or > 18 large shade trees of > 20m 
tall per ha OR 
• <75% receive shade during part of the day OR 
• Shade trees that are not compatible with cocoa i.e. host of disease, competition for root or canopy 
space, no breaking branches 

D. Soil Fertility Management 

D1. Physical condition of farm land (soil condition): What is the physical condition of the land and its 
limiting factors for cocoa cultivation? 
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Good Observation: 
• No signs of erosion, no roots visible on the surface AND  
• few rocks or gravel on farm surface or in the ground as measured by 3 holes of 30 cm deep per 
plot AND 
• soil is neither too sandy or argillic  as measured by touch/roll test on soil from 3 holes of 30 cm 
deep per plot AND 
• well drained either naturally or through drainage canals AND 
• slope < 15%  

Bad Observation: 
• signs of erosion, roots visible on the surface OR  
• many rocks or gravel on farm surface or in the ground as measured by 3 holes of 30 cm deep per 
plot OR 
• soil is too sandy or too argillic measured by touch/roll test on soil from 3 holes of 30 cm deep per 
plot) OR 
• poorly drained (waterlogged) OR 
• slope > 15% 

D2. Organic Matter (Soil Health): What is the volume and level of decomposition of organic matter on 
and in the soil and what are other indicators of soil health i.e. worm, insect activity and microbial life 
for supporting or limiting the yield potential of the planting material? 
Good Observation: 

• Clear signs of microbial activity everywhere on the farm with multiple layers of decaying organic 
material covering the soil under the cocoa canopies of all trees, worms, worm castings, insect 
activity, soil pores AND 
• Organic material left in the farm and/or extra organic material (compost, manure)  around cocoa 
trees or in ‘mulching rows or trenches’ evenly spread through the farm (note: pod husk left in the 
farm is a strong positive indicator) 

Bad Observation: 
• >10% of soil under the cocoa tree canopies is exposed without at least one layer of decaying 
organic material OR 
• Little or no signs of organic material in the farm or microbial activity in the soil 

D3. Fertilizer Formulation: What kind (formulation) of fertilizer is used at the farm i.e. nutrient content, 
nutrient balance and non-acidifying and does it support or limit the yield potential of the planting 
material? 
Good Interview: 

• Use of well-balanced NPK + Secondary + Micro nutrients  fertilizer with N in CaNitrate AND 
• No use of Urea AND 
• If pH <5.7 apply mechanism to add Ca to soil i.e. use relevant dose of lime, higher doses of 
Nitrabor, more organic material etc. 

Medium Interview 
• Use of Ammonium based NPK + Secondary + Micro nutrients fertilizers with reasonable nutrient 
balance, if accompanied with significant doses of lime/kieserite/dolomite or Nitrabor AND 
• No use of Urea AND 
•  If pH <5.8 apply mechanism to add Ca to soil i.e. use relevant dose of lime, higher doses of 
Nitrabor, more organic material etc. 

Bad Interview 
• Use of poorly balanced fertilizer OR 
• Use of Ammonium based N without additional lime, Kieserite or Dolomite OR 
• Use of Urea 

D4. Fertilizer application: How is fertilizer used i.e. dosage, timing and application technique, and does 
it support or limit the yield potential of the planting material? 
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Good Interview 
For details see manual 
For Mature trees and to sustain 1.5 mt/ha AND 
• > 700 kg/ha of all fertilizer combined excluding lime/dolomite AND 
• applied under the leaf litter or in the soil at the root system of the trees AND 
• applied at least once per year 

Medium Interview 
For details see manual 
For Mature trees and to sustain 1.5 mt/ha AND 
• > 400 - 700 kg/ha of all fertilizer combined excluding lime/dolomite AND 
• applied mostly under the leaf litter or in the soil at the root system of the trees AND 
• applied at least once per year 

Bad Interview 
For details see manual 
For Mature trees and to sustain 1.5 mt/ha OR 
• < 400 kg/ha of all fertilizer combined excluding lime/dolomite OR 
• mostly applied close to trunk or far from tree root system, applied on leaf litter OR 
• applied <1 time per year 

 
 
Appendix 2. Comparing Existing Soil Map Data to Site-specific Soil Data 

 
The ability to identify a soil’s type or series provides a critical link to soil information a farmer can use to 
implement sustainable soil management practices. The main objective of this analysis was to evaluate 
the relative accuracy of soil maps available for Ghana using existing maps and soil data points.  This 
appendix describes the results from two different research tasks designed to evaluate the relative 
accuracy of current soil maps.  
 
The first task (Task 1) is focused on inherent soil properties. These include factors such as sand or clay 
content.  Inherent soil properties can be used to inform farmer decisions on a variety of management 
practices such as irrigation frequency, need for organic amendments, likelihood of erosion, and so on.  
This task performed a comparison of inherent soil properties (e.g., texture, rock fragments) between 
soil maps (dominant mapped soil) and LandPKS study sites in northern Ghana. LandPKS data provides 
information on inherent soil properties (the long-term potential of the soil), including soil texture and 
rock fragment volume. These properties directly affect cocoa production. They also determine how 
susceptible soils are to declines in fertility, and how responsive they are likely to be to different types 
and amounts of fertilizer and organic amendments such as compost and manure. The second research 
task (Task 2) focused on soil type (taxonomy).  Soil types can be used to inform decisions tailored to a 
farmer’s specific needs on a range of management practices to improve soil health management 
decisions including (for example) the use of modifiers (e.g. lime) of soil pH and the need for nutrient 
specific fertilization to address soil deficiencies. Task 2 performed a comparison of the World 
Reference Base  (WRB)3 soil taxonomic classification (Reference Soil Group [RSG]) between soil maps 
(dominant mapped soil) and the Ghana Soil Profile Database (GSPD), a collection of historic soil profile 
descriptions collected from different soil mapping and/or research studies in Ghana. The GSPD soil 
profiles were collected by professional soil scientists and each profile is classified to a soil type using 
the World Reference Base (WRB) soil taxonomic system.  
 
                                                             
3 WRB is an international soil classification system for naming soils and creating legends for soil maps. 
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These two research tasks provided insight into the relative accuracy of the different soil mapping 
products both in terms of their functional similarity (indicated by a similarity in inherent soil property 
values from (Task1) and a taxonomic similarity through matching RSGs (Tasks 2). Both of these types 
of properties can be obtained from geospatial soil map resources and from the LandPKS mobile 
application either directly (e.g. texture) or indirectly (e.g. soil type) following assessment of a site.   
Results from these analyses show that (1) on average all of the soil map products have some value in 
predicting soil texture in northern Ghana but high variability may limit their utility when applied at the 
farm-scale, and (2) that SoilGrids provides more accurate soil property and taxonomic class predictions 
in Northern Ghana relative to either HWSD or WISE. These analyses are a key step toward 
understanding differences in soil map products, the relation of these products to soil profile data (e.g., 
LandPKS, GSPD), and the next steps for building linkages between site specific soil assessment and 
potential farming recommendations.   
 
Task 1: Relative accuracy of soil maps in Northern Ghana—Soil property similarity 

To evaluate the relative accuracy of soil maps in Northern Ghana we compared the mapped soil 
property data at 5,815 LandPKS sites for each of the available soil maps to the measured (i.e., 
validation) LandPKS soil property data collected at each site. LandPKS soil profiles were sampled in 
the Northern, Upper West, and Upper East regions of Ghana (Figure 1) as part of a monitoring program 
of USAID Feed the Future projects. Data collection was performed by trained field crews following 
standard LandPKS sampling protocols. To account for differences in soil property depths between the 
LandPKS sites and the different soil maps, all soil map profiles were segmented at 1 cm increments 
and reaggregated at LandPKS standard depth intervals (i.e., 0-1, 1-10, 10-20, 20-50, 50-70, 70-100, 
100-120 cm) (Figure 2). Quality control filtering was performed on LandPKS data to remove incomplete 
or questionable sites. This included excluding sites with less than three measured soil layers or sites 
that failed a simple logic filter based on incompatible data inputs (i.e., sandy textures and deep vertical 
cracking). 
 
Figure A1.1. Soil profile slicing and aggregation method for converting contrasting soil sampling depths 
to the standard LandPKS sampling depths 

 
While the availability of different soil mapping products has increased in Ghana over the past several 
decades, current soil maps are still only available at coarse spatial scales (i.e., 1:400,000 to 
1:5,000,000). Table A1.1 lists the four soil mapping products available in Ghana. Traditional soil maps 
(i.e., HWSD, WISE, Ghana Soil Map) do not show the exact location of a soil series but instead display 
Soil Map Units (SMUs) representing distinct areas of a landscape composed of one or more soil series. 
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A common method for dealing with this spatial uncertainty is to assign any location within a SMU to its 
dominant soil series. In our comparisons of soil property values, we used the property values 
associated with the dominant SMU soil. In Ghana, the Harmonized World Soil Database (HWSD) is 
derived from the FAO-UNESCO Digital Soil Map of the World (DSMW) which has a map scale of 
1:5,000,000. HWSD soil property data is derived using actual soil profile data from the World Inventory 
of Soil Emission Potential (WISE) soil profile database and pedotransfer rules, producing two 
aggregated soil depth intervals (0-30 and 30-100 cm). The WISE soil map is a recent improvement 
upon HWSD, where an expanded WISE soil profile database and new pedotransfer rules were used to 
derive soil profile data at 7 standardized depth intervals (0-20, 20-40, 40-60, 60-80, 80-100, 100-150, 
150-200 cm). HWSD and WISE have identical spatial data but differ in their soil property data (2 vs 7 
depths for HWSD and WISE, respectively). The Ghana Soil Map (not available for this report) is a 
traditional polygon-based soil map with a map scale of 1:400,000. 
 
Digital soil mapping products (e.g., SoilGrids) offer an alternative to traditional soil maps by providing 
predictions of soil properties and classes at specific locations. SoilGrids is a global digital soil map that 
predicts soil properties at a 250 m spatial resolution at seven standard depths (0, 5, 15, 30, 60, 100 and 
200 cm). 
 
We evaluated the accuracy of each soil map by calculating the statistical distance between their 
mapped soil property values and the soil property values measured at each LandPKS site. Statistical 
distance or dissimilarity was calculated as: 
 

𝐷 =
|𝑋% − 𝑋'|
100

 
 
where D is the statistical distance or dissimilarity for property X, and XO and XP are the observed (i.e., 
LandPKS) and predicted values for property X.  The following soil properties were evaluated, percent 
clay, percent sand, and rock fragment volume. Since LandPKS soil texture and rock fragment volume 
data are class-based measurements, we converted all numeric soil property values to their 
corresponding property class and then derived the representative numeric value associated with that 
property class. For example, if the SoilGrids sand and clay percentage values were 14 and 20, 
respectively, it would classify as a silt loam texture. Based on the representative sand and clay values 
for a silt loam, SoilGrids sand and clay values would be reassigned as 25 and 13.5, respectively (Table 
A1.8, A1.9). These generalization steps ensure that all data comparisons are made using the same 
level of generalization. 
 
Table A1.1. Soil mapping products in Ghana 

Soil Map Map Extent and Scale Map-unit Depth support 
HWSD Global, 1:5,000,000 Polygon 2 layers: 0-30, 30-100 cm 
WISE Global, 1:5,000,000 Polygon 7 layers: 0-20, 20-40, 40-60, 60-80, 80-100, 

100-150, 150-200 cm 
SoilGrids Global, 250 m Raster 7 depths: 0, 5, 15, 30, 60, 100, 200 cm 
Ghana Soil Map† National, 1:400,000 Polygon Genetic horizons 

†Not evaluated in this draft report 
 
Table A1.2.  Georeferenced soil profile data in Ghana 

Soil Profile Data # points Taxonomy Soil properties† Depth support 
LandPKS 5,815 No TXCL, RFV Up to 7 layers: 0-1, 1-10, 10-20, 20-50, 50-

70, 70-100, 100-120 cm 
Ghana Soil Profile 
Database 

53 Yes TXCL, RFV Genetic horizons 

†TXCL, soil texture class; RFV, rock fragment volume 

Eq. 1 
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We evaluated 5,815 LandPKS study sites which comprised a total of 33,953 individual soil layers. The 
distribution of soil texture classes for the LandPKS sites and corresponding dominant mapped soils are 
shown in Table A1.3. Texture classes in Table A1.3 are ordered from low-to-high based on their 
available water holding capacity (AWC) (i.e., sand = low AWC, clay = high AWC). LandPKS sites have 
predominantly coarse textured soil with 72% of soil layers classified as sandy loam or coarser. In 
contrast, HWSD only has 13% of soil layers classified as sandy loam or coarser. WISE and SoilGrids 
are more similar with 40% and 64% of soil layers classified as sandy loam or coarser, respectively. 
LandPKS sites span a wider range of textures which is expected given the natural variability of soil 
texture in the field versus the representative texture values used to populate soil maps. Table A1.4 
shows the distribution of soil rock fragment classes for the LandPKS sites and corresponding dominant 
mapped soils. LandPKS sites show a range of soil rock fragment classes, with an almost equal 
distribution among the first four classes. HWSD predicted low rock fragments (90% = 1-15% class) 
while WISE and SoilGrids had higher percentages in the higher rock fragment classes which more 
closely aligned with LandPKS values. 
 
Table A1.3. Percent distribution of soil texture classes among the different soil data sources 

 LandPKS HWSD WISE SoilGrids 
Texture Class†                              --- % LandPKS Soil Layers (n=33,953) --- 
Sand 27 -- -- -- 
Loamy sand 26 -- -- -- 
Sandy loam 19 13 40 64 
Loam 4 28 11 3 
Silt loam 4 -- -- -- 
Silt -- -- -- -- 
Sandy clay loam 7 29 26 31 
Clay loam 3 21 15 2 
Silty clay loam -- -- -- -- 
Sandy clay 2 -- -- -- 
Silty clay -- -- -- -- 
Clay 1 9 9 -- 

†Texture classes are ordered by their available water holding capacity (AWC), e.g., Sand = low AWC and Clay = high AWC.  
 
 
Table A1.4. Percent distribution of rock fragment classes among the different soil data sources 

 LandPKS HWSD WISE SoilGrids 
Rock Fragment Class                 --- % LandPKS Soil Layers (n=33,872) --- 
0-1% 23 -- -- -- 
1-15% 25 90 61 64 
15-35% 21 10 21 36 
35-60% 20 -- 18 -- 
>60% 1 -- -- -- 

 
Dissimilarity values were calculated between soil property values from LandPKS and the dominant soil 
from each soil map using Eq. 1. This resulted in a dissimilarity value for HWSD, WISE, and SoilGrids 
for each of the 33,953 soil layers. Analysis of variance (ANOVA) was performed to evaluate the pair-
wise differences in dissimilarity among the soil maps. Posthoc comparisons between soil maps were 
made using Tukey’s honestly significant difference (HSD). All statistical differences were tested at the p 
= 0.05 confidence level. 
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Figure A1.2 Boxplots of the dissimilarity between LandPKS and soil mapped data 

 
Notes: Boxplots (median ± 95%CI) of the dissimilarity (statistical distance) between LandPKS and soil mapped data for the 
representative values of (a) percent clay and (c) percent sand. Letters above each boxplot indicate statistically significant 
differences among the soil maps. Density plots of dissimilarity values for (b) percent clay and (d) percent sand between 
LandPKS and soil mapped data. Vertical dashed lines in panels (b) and (d) represent the median dissimilarity value for each 
soil map. The different letters (c, a, b) within each plot indicate significant differences between soil maps for that plot.4 

 
Dissimilarity values for clay and sand were statistically different among the soil maps, with SoilGrids 
having the lowest dissimilarity, followed by WISE and then HWSD (Figure A1.3a). This indicates that, 
for this particular dataset, the soil texture accuracy for SoilGrids is significantly better (i.e., closer to 
LandPKS texture values) relative to either WISE or HWSD. Rock fragments showed a similar pattern to 
soil texture, with dissimilarity values statistically different among the soil maps and with SoilGrids 
having the lowest dissimilarity, followed by WISE and then HWSD (Figure 4a). On average SoilGrids 
                                                             
4 The graphical display of significant differences uses a compact letter display where each lower-case letter symbolizes the 
significant difference between soil maps at the p=0.05 significance level. For example, in a pairwise comparison of clay values 
between the different soil maps, if we found that that 1) SoilGrids ↔ HWSD = significant difference, 2) SoilGrids ↔ WISE = no 
significant difference and 3) HWSD ↔ WISE = no significant difference, we would assign the following letter: SoilGrids=a, 
WISE=ab, HWSD=b. These letters tell us that SoilGrids and WISE are not significantly different because they both share the 
letter ‘a’. Similarly, WISE and HWSD are not significantly different because they both share the letter ‘b’. However, SoilGrids 
and HWSD are significantly different because they do not have any letters in common. Given each graphic is showing only 
one letter indicates that all three soil maps were significantly different. 
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had only a 9% difference in clay from the LandPKS measured clay, compared to 15 and 17% for 
HWSD and WISE, respectively (Table A1.5). Relative differences in dissimilarity values among the soil 
maps were less pronounced for sand with mean values ranging from 21 to 30% (Table A1.5).  
Density plots of dissimilarity values for clay, sand, and rock fragments showed similar patterns among 
the soil maps, with SoilGrids having a consistently higher density of low dissimilarity values relative to 
HWSD and WISE (Figs. A1.3b&d, A1.4b).  
 
Figure  A1.4. Boxplots (median ± 95%CI) of the dissimilarity (statistical distance) between LandPKS 
and soil mapped data for the representative values of the percent rock fragment volume (a). Letters 
above each boxplot indicate statistically significant differences among the soil maps. Density plots of 
dissimilarity values for (b) percent rock fragment volume between LandPKS and soil mapped data. 
Vertical dashed line in panel (b) represents the median dissimilarity value for each soil map. 
 

 
 
Table A1.5. Summary statistics for soil property dissimilarity values 

 HWSD WISE SoilGrids 
Dissimilarity mean cv† mean cv mean cv 
Clay 17 18 15 19 9 10 
Sand 30 26 28 26 21 19 
RFV 27 37 26 29 24 29 

Notes: † cv=coefficient of variation 
 
To help further illustrate accuracy differences between the soil maps, we calculated several measures 
of similarity between LandPKS soil property values and the predicted soil map values. The first 
measure is based on an exact match between LandPKS and soil map values. In other words, it is a 
measure of how often the soil map property value was the same as the LandPKS measured value. For 
soil texture, the percentage of LandPKS soil layers that had the same texture class as the soil map 
ranged from 6 (HWSD) to 15% (SoilGrids) (Table A1.6). Match rates for rock fragment classes were 
higher and very similar among the soil maps, ranging from 24-26%.  
 
An additional method for evaluating the relative accuracy of the soil maps is to determine which soil 
map has the highest similarity (lowest dissimilarity) for each of the 33,953 LandPKS soil layers. We 
should note that at any given site more than one soil map can be assigned the rank of highest similarity 
for a given site when they share the same soil property value and that value matches or is closest to 
the LandPKS property value. Using this approach, SoilGrids property values had the highest similarity 
to the LandPKS property values for 83% of LandPKS clay values and at 73% of LandPKS sand values. 
This contrasts with WISE and HWSD which had the highest similarity to LandPKS values at far fewer 



Map to the Future (M2F) page 43 

 
 

sites for both clay and sand (HWSD: 34-43%; WISE: 50-59%). For rock fragments, the percentage of 
sites with the highest similarity was similar among soil maps, ranging from 33-36%. 
 
Table A1.6. Measures of soil property similarity between LandPKS values and predicted soil map 
values 

 HWSD WISE SoilGrids 
Similarity Measure† --- % LandPKS Soil Layers (n=33,953) --- 
Texture match 6  11 15 
Rock Fragment match 24 25 26 
Highest Site Similarity    

Sand 43 50 73 
Clay 34 59 83 
Rock Fragments 34 36 33 

 
Figure A1.5. Soil pedons in Ghana with WRB taxonomic classifications 

Notes: †Multiple soil maps can obtain the same similarity measure (e.g., highest similarity) for a given site 
when they share the same soil property value and that value matches or is closest to the LandPKS 
property value 
 
Task 2: Relative accuracy of soil maps in Ghana—Taxonomic similarity 
 
We acquired existing soil profile observations in Ghana from three sources: (1) the African Soil Profile 
Database (AfSP: 163 profiles), (2) the World Inventory of Soil Emissions potentials (WISE: 11 profiles), 
and (3) the World Soil Information Service (WoSIS: 432 profiles). These soil profile datasets were 
collected by trained soil scientists and thus represent high-quality reference data that can be used to 
evaluate the accuracy of soil maps in Ghana. The datasets were combined and filtered to exclude 
profiles with missing soil property input data (i.e., soil texture class, rock fragment volume class) and 
missing taxonomic classifications. These aggregation and filtering steps resulted in 53 soil profiles 
meeting these criteria and hereafter referred to as the Ghana Soil Profile Database (GSPD)(Table A1.2, 
Figure A1.5).  
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At each of these 53 soil profile locations, we queried the dominant soil series from HWSD and WISE 
soil maps and queried the top predicted soil series class from SoilGrids. We then compared the 
reference soil group (RSG) (e.g., Acrisol) from each of the soil maps relative to the RSG correlated to 
each of the GSPD profiles. Results from this analysis show that SoilGrids was twice as accurate in 
predicting the correct RSG when compared to HWSD and WISE, with a 66% correct match rate 
compared to 30% and 32% for HWSD and WISE, respectively (Table A1.7). 
 
Table A1.7. Measures of soil property similarity between LandPKS 
values and predicted soil map values 

 RSG match rate 

HWSD 30% 
WISE 32% 
SoilGrids 66% 

 
Initial conclusions on Ghana soil map accuracy 
 
Based upon these initial results, SoilGrids provided more accurate soil property and RSG predictions 
than either HWSD or WISE soil maps. Results from Task 1 showed that SoilGrids had (1) significantly 
lower sand and clay dissimilarity values, (2) higher exact match rates for soil texture classes, and (3) a 
considerably higher occurrence of maximum site-wise similarity for sand and clay relative to HWSD or 
WISE. Since dissimilarity values were normalized on a 100 percent scale, values reflect the absolute 
difference in soil property values between the measured LandPKS data and the predicted soil map 
property values. These results showed that the mean difference (absolute value) in clay percentage for 
SoilGrids relative to LandPKS was only 9% (9% CV). This means that on average the clay percentage 
reported by LandPKS and SoilGrids at a site was different by only 9% (e.g., 10% clay vs 19% clay). 
Mean differences in sand and rock fragment volume percentages for SoilGrids were higher, 21% (19% 
CV) and 24% (29% CV), respectively. These results indicate that in many cases SoilGrids provides 
relatively accurate predictions of soil texture relative to LandPKS.  
 
Results from Task 2, using GSPD profiles as reference, showed that SoilGrids was twice as accurate in 
predicting the RSG (66% accuracy) relative to HWSD and WISE (30 and 32% accuracy, respectively; 
Table A1.7). Task 2 applied an exact matching criterion where the RSG name correlated to each soil 
profile must match the RSG name from the dominant soil queried from each soil map. Depending on 
the between-class variability of soil properties that influence land potential, different soil series may 
function similarly with respect to specific land-use practices. Thus, evaluating the accuracy of soil maps 
based on an exact RSG name match may under represent the functional or management-relevant 
similarity. Additionally, both HWSD and WISE are traditional soil maps that often include multiple soil 
types mapped at a sampling location. Thus, the lower RSG match rates for HWSD and WISE may be 
due in part to our reliance on the dominant soil from each map unit.  
 
Our reliance on the dominant soil from each map unit is an important point as HWSD and WISE are 
designed to predict groups of soils occurring within a map unit. However most users of soil maps (and 
nearly all non-soil scientists) simply select the dominant component, as we did here. One of the 
principal values of the LandPKS + SoilID approach (#4 in the main text) is that it effectively gives non-
soil scientists the ability to access all of the data in traditional soil maps, like HWSD and WISE, 
resulting in potentially higher accuracy than any of the other 3 approaches. 
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 Table A1.8. Representative sand and clay numeric values for the different soil texture classes 

 Range Representative Value 
Texture Class Sand Clay Sand Clay 
Sand 85-100 0-10 92.5 5 
Loamy sand 70-90 0-15 80 7.5 
Sandy loam 43-80 0-20 61.5 10 
Loam 23-52 7-27 37.5 17 
Silt loam 0-50 0-27 25 13.5 
Silt 0-20 0-12 10 6 
Sandy clay loam 45-80 20-35 62.5 27.5 
Clay loam 20-45 27-40 32.5 33.5 
Silty clay loam 0-20 27-40 10 33.5 
Sandy clay 45-65 35-55 55 45 
Silty clay 0-20 40-60 10 50 
Clay 0-45 40-100 22.5 70 

 
Table A1.9. Representative rock fragment volume numeric values for the different rock fragment 
classes 

 Range Representative Value 
Texture Class RFV RFV 
0-1% 0-1 0 
1-15% 2-15 8 
15-35% 15-35 25 
35-60% 36-60 48 
>60% 61-100 80 
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Appendix 3. LandPKS Soil and Site Characterization Protocol 

 
LandPKS Site Characterization 

 
Purpose: Complete LandPKS site characterization per the detailed instructions in the protocol below  
 
Materials: 

● Smartphone/tablet with LandPKS App 
● Measuring tape 

 
Protocol: 
1. Create a new sampling location 

a) Determine the location of the soil pit based on site selection guidance provided by LandPKS. 
Create a LandPKS plot at the location and assign it the correct sample name. Make sure that 
you give the phone or tablet enough time to get an accurate geolocation for the site with the 
highest possible positional accuracy (<15 m if possible). 

2. Cocoa tree measurements 
a. Identify the location of the 10 closest cocoa trees to the location of the LandPKS soil pit. 
b. At each tree, locate the point on the cocoa trunk that is 1.35 m from the ground. If irregular tree 

growth results in non-representative trunk dimensions at breast height (1.35 m), then height 
adjustments will need to be made. Figure 1 illustrates the different tree shapes and where to 
measure the tree’s circumference (circumference at breast height; CBH). Decide which tree 
class from Figure 1 each tree belongs and determine the mark along the trunk where the CBH 
measurement should be taken.  

c. At this height, wrap the tape around the trunk, ensuring the tape is perpendicular to the trunk 
and tight against the bark, and measure the circumference (i.e., CBH). Record this value for 
each tree in the notes section of the LandPKS app, also indicating its tree class from Figure 1 
(i.e., Tree 1 = Class A, 42 cm CBH; Tree 2 = Class H, 30 cm CBH; etc.). 

d. Figure 1 illustrates the different cocoa tree shapes and the method uses to measure CBH. 
i. CBH should be measured 1.35 m from the ground (Figure 1A) on the uphill side of the tree 

trunk (Figure 1B). 
ii. Trees that lean should be marked and measured at 1.35 m along the trunk, and the 

measurement should be taken perpendicular to the tree’s trunk (Figure 1C). 
iii. In cases where trees have scars, knots, burls, or other deformities at 1.35 m, the mark and 

measurement should instead be made at the minimum distance necessary to clear the 
obstacle, above or below 1.35 m (Figure 1D). 

iv. Trees that curve, or “sweep” up from the ground are treated differently from ones that lean; 
curved stems are marked and measured at 1.35 vertical meters from the ground, making 
sure the measurement is made perpendicular to the stem at the point of measurement 
(Figure 1E). 

v. For trees that have swollen-butted trunks where the swelling affects trunk diameter at 1.35 m, 
the mark and measurement are 0.45 m above the top of the swelling (Fig 1F). 

vi. Forked trees are treated as two separate trees, with two separate marks and measurements 
if they fork below 1.35 m. In this case, marks and measurements should be made 1.35 m 
from the ground above the fork (Figure 1G). 

vii. If a fork occurs above 1.35 m, then a single measurement should be made 1.35 m (Figure 
1H). 
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viii. Forks just above 1.35 m may cause a distortion of the trunk shape and size at 1.35 m; in this 
case, mark and measure at the minimum distance below 1.35 m necessary to obtain an 
undistorted reading (Figure 1I). 

 
3. Site characteristics 

a. In the LandPKS app, go to the Data Input screen and select Land Slope in the LandInfo module. 
Record the site’s slope using either the LandPKS slope meter or by selecting the picture 
representing the site’s slope class. 

b. Select the Slope Shape tab and record the site’s slope shape. Slope shape describes the shape 
of the land both in the direction of the slope (i.e., down-slope from the site, left column of 
pictures in LandPKS app), and the shape perpendicular to the slope direction (i.e., across-slope 
from the site, right column of pictures). Slope shape is assessed by looking down and across 
the slope within a 20-50m diameter area around the site. 

c. On the Data Input screen, scroll down the list of input modules and select Photos. On the next 
screen, select landscape photos.  Capture landscape photos of the site in the north, south, east, 
and western directions. 

 
LandPKS Soil Profile Characterization 

Figure  Modifications to CBH measurements due to irregular cocoa tree growth. 
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Purpose: Complete LandPKS soil profile characterization per the detailed instructions in the protocol 
below  
 
Materials: 

● Smartphone/tablet with LandPKS App 
● Digging tools (shovel, hoe, etc.) 
● Tarp, with marked areas labeled with LandPKS soil sample depths 
● ~2mm sieve(s) - 20cm or larger diameter. 
● Measuring tape 
● Water bottle with water 
● Trowel or knife 
● Tray, board, or small bin; ~30x30cm for collection soil samples from the pit face 

 
Protocol: 
1. Dig the soil pit 

a. Before digging the soil pit, determine the location of the pit face, and what time of day the profile 
description will occur. The pit face refers to the portion of the soil pit that will be described. 
Ideally, the pit face should be situated so that it is in full sunlight during the description and 
should be as vertical as possible. If the soil pit is located under tree canopy, determine which 
side of the soil pit will receive the most sunlight and make that side the pit face. 

b. Dig a large hole and clear a 70 x 100 cm area on one edge of the hole where the labeled tarp 
will be placed. Place all soil excavated during digging on the opposite side. 

c. The soil pit should be as deep as possible (>120 cm); but at least 70 cm or to the depth of 
bedrock. Dig a hole at least 15cm deeper than the bottom of the layer to be sampled. 

d. If bedrock was reached, record depth value in the Soil Texture section of the LandPKS app 
e. Measure the depth of any surface plant litter layer and record in notes. Scrape away surface 

litter layer down to the start of the mineral soil.  
2. Prepare the Pit Face and Locate Soil Layers 

a. Once the pit has been excavated, the face needs to be cleaned of loose material and smearing 
before sampling. This is done by picking the loose material off with a knife, rock hammer, 
spade, or similar instrument. It is best to clean from the top down so that loose material does not 
fall onto areas that have already been cleaned. 

b. After the cleaning process is complete, use a measuring stick or tape to determine the top and 
bottom boundary for each LandPKS sampling layer based on the depths in the soil texture 
screen in LandInfo. Use a small stick to mark each boundary depth.  

3. Photograph the Soil Pit 
a. After marking all sampling depths, take a photograph of the pit face using the Photos sections of 

the app on the Data Input screen. Select Photos, and then Pit Photo. It is helpful to place the 
measuring stick or tape against the pit face to show the depth scale in the photo.  

b. Try to take the photo as vertical to the pit face as possible and with the most even lighting 
conditions possible (e.g., not partly direct sun and shadow). 

4. Collect and Prepare Soil Samples (for field evaluation – no samples will be taken from the farm) 
a. Place the sampling tarp on the 70 x 100 cm cleared area adjacent to the pit. There should be a 

separate space for each soil depth marked on the tarp and it should be labeled.  
b. Starting at the bottom sampling depth, place the flat collection surface (tray, board, small bin, 

shovel) perpendicular to the pit face at the bottom of each sampling depth. 
c. Using a knife or trowel, excavate approximately 0.5-1 liter of soil from each layer and place it on 

its designated location of the sampling tarp. Ensure that the sample for each layer is 
representative of that layer. For example, if collecting soil from the 20 to 50 cm layer, make sure 
to collect some soil at each depth from 20 to 50. This can be easily done by scraping the side of 
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the pit with a knife or some other semi-sharp object, so that some of the soil falls onto the flat 
collection surface from every depth between 20 and 50. 

d. Manually break apart the soil with your hands so that the soil can dry and will be easier to pass 
through the 2mm sieve. 

e. Collect a photo of the tarp containing the prepared soil samples (i.e., LandPKS app → Photos 
→ Samples Photo). 

5. Estimate Soil Coarse Fragments 
a. For each soil layer, pass several handfuls of soil through the 2mm sieve. Separate all material 

>2mm and place in a pile. Once the soil has been sieved for a soil layer, place the sieved soil in 
a pile next to the coarse fragment pile for that layer. 

b. By visually comparing the relative volume of the sieved soil pile and coarse fragment pile, 
estimate the proportion of the total soil volume (soil + coarse fragments) that the coarse 
fragments (all >2mm) occupy. Remember to account for any larger rocks that were not sampled 
from each layer of the pit face or larger rocks from the sampled soil that were not included in the 
sieved sample. Additionally, use the pictures of coarse fragment classes displayed in the 
LandPKS app’s Rock Fragment Volume section on the Soil Texture screen in LandInfo to assist 
in selecting the correct coarse fragment class. 

6. Measure Soil Color 
a. Using the 2mm sieved soil, take a subsample (about a handful) and flatten the soil pile on the 

tarp. Make sure the flattened pile is at least 1 cm deep.  
b. Place a color reference card next to the soil pile.  
c. Open the Soil Color screen of the LandPKS app under LandInfo. In uniform lighting conditions 

(not direct sunlight), take a photo of the color card and soil about 10 to 20 cm above the sample 
following the color measurement instructions within the LandPKS app. 

7. Determine Soil Texture 
a. For each depth, start with a small handful of soil, about the size of a golf ball, and slowly add 

water a drop at a time, mixing as you go, until you have a ball of soil that has the consistency of 
putty. If too much water is added and the soil appears saturated, add additional dry soil until a 
putty consistency is achieved. 

b. Using the LandPKS soil texture guide, follow each step to determine the correct soil texture 
class and record this in the LandPKS app on the soil texture screen for each depth 

8. Soil Health Assessment 
In the SoilHealth module, record all information on soil health indicators for: 

a. Erosion 
b. Compaction (include any hard layers not caused by compaction) 
c. Aggregate stability 
d. Soil smell 
e. Biological activity 

10. Soil Limitations 
In the LandInfo module, record information on soil limitations in the app, including: 

a. Surface/Vertical soil cracks 
b. Surface stoniness 
c. Soil depth  
d. Water table depth (if encountered) 
e. Flooding (if visible signs or information from farmer) 
f. Lime requirement (information from farmer if available) 

Appendix 4. Useful Links and References 

Useful Links 

About FarmGrow - www.farmgrow.org 
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About LandPKS  - www.landpotential.org 
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